Документ подписан простой электронной подписью

Информация о владельце:

Уникальный программный ключ:

3357c68ce48ec4f695c95289ac7a9678e502be60

ФИО: Новиков Букузакией повичисциплине «Моделирование судового электрооборудования и средств Должность: Директор филиала Дата подписания: 11.11.2024 11:28:15 автоматики»

Разделы 1,2,3

формирует компетенции ПК-9,УК-2, А-III/6-2.1.,А-III/6-2.2.

Тест №1

1.Основной недостаток ПИД-регулятора:	1. Высокая стоимость
	2. Сложность практической реализации
	3. Сложность настройки параметров
	4. Низкая помехозащищенность
2. В САР, построенной по принципу возмущения,	1. Положительная обратная связь по регулируемой
используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. В САР с астатизмом первого порядка отсутствуе	1. Статическая ошибка по возмущению
	2. Установившаяся динамическая ошибка
	при изменении задающего воздействия по линейному
	закону
	3. Статическая ошибка по задающему воздействию
	4. Установившаяся динамическая ошибка
	при изменении возмущения по линейному закону
4. Стабилитроны в цепи обратной связи регулятора	
скорости в системе подчиненного регулирования	2. Максимальную частоту вращения ЭД
ограничивают:	3. Ток якоря ЭД
	4. Магнитный поток ЭД
5. В двухконтурной системе подчиненного	1. Внутренним для контура регулирования скорости
регулирования скорости контур регулирования ток	2. Внешним для контура регулирования
является:	скорости
	3. Внешним для контура регулирования напряжения
	якоря
	4 Внутренним для контура регулирования
	ЭДС

1.Передаточная функция ПИД-регулятора:	$1. \frac{T_{up}}{+T_{1}p}$
	$2.\frac{+T_{\kappa p}}{T_{up}}$
	3. $\frac{1}{T_u p}$

	4. $\frac{(1+T_2p)(1+T_1p)}{T_up}$
2. В САР, построенной по принципу отклонения,	1. Положительная обратная связь по регулируемой
используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. В статической САР для оценки точности	1. Постоянное входное воздействие
используют:	2. Входное воздействие, изменяющееся по линейному
	закону
	3. Синусоидальное входное воздействие
	4. Ступенчатое воздействие
4. Монотонный переходный процесс в замкнутой	1. <i>a</i> =2
системе обеспечивается при коэффициенте	2. <i>a</i> =1
настройки а равном:	3. $a \ge 4$
	4. 2< <i>a</i> < 4
5. В двухконтурной системе подчиненного	1. Внутренним для контура регулирования скорости
регулирования скорости контур регулирования ток	2. Внешним для контура регулирования
является:	скорости
	3. Внешним для контура регулирования напряжения
	якоря
	4 Внутренним для контура регулирования
	ЭДС

Teci	· 1-2
1.Передаточная функция ПИ-регулятора:	$1.\frac{K}{1+T_{R}p}$
	$2.\frac{1+T_{\scriptscriptstyle R}p}{T_{\scriptscriptstyle U}p}$
	$3. \frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_{up}}$
2. Основное достоинство параметрических СУ:	1. Низкая стоимость и простота
	2. Малые габариты
	3. Высокое быстродействие
	4. Высокая точность
3. Электромагнитная постоянная времени ДПТ это	1. $L_{\text{HI}} / R_{\text{HI}}$
	$2. U_{\text{яц}} / R_{\text{яц}}$
	$3. R_{\text{яц}} / L_{\text{яц}}$
	4. $I_{\text{H}} / R_{\text{H}}$
4. При каком значении коэффициента	1. <i>a</i> =1
$a = \frac{T_0}{T_\mu}$ обеспечивается настройка контура	2. <i>a</i> =2
·	3. a = 3
регулирования на технический	4. a = 4

(модульный) оптимум	
5. В двухконтурной системе подчиненного	1. Внутренним для контура регулирования скорости
регулирования скорости контур регулирования ток	2. Внешним для контура регулирования
является:	скорости
	3. Внешним для контура регулирования напряжения
	якоря
	4 Внутренним для контура регулирования
	ЭДС

1. Настройка одноконтурной системы регулировани	1. И - регулятора скорости
скорости на модульный оптимум требует	2. ПИД - регулятора
использования:	3. П - регулятора
	4. ПИ – регулятора
2. Автоматическая СУ отличается от	1. Обратной связи
параметрической наличием:	2. Регулятора
	3. Управляемого преобразователя
	4. Датчиков измерения параметров системы
3. Быстродействие контура регулирования	1. Перерегулированием - σ
переменной определяется:	2. Временем переходного процесса - t _{пп}
•	3. Временем достижения максимума регулируемой
	величины - t _м
	4. Временем первого согласования – t ₁
4. Координатой ЭП не является:	1. Ток якоря (статора) ЭД
4. Координатой Этт не является.	2. Частота вращения вала ЭД
	3. Положение вала ЭД
	4. Напряжение питающей сети
	п. паприжение питающей сети
5. В двухконтурной системе подчиненного	1. Внутренним для контура регулирования скорости
регулирования скорости контур регулирования ток	2. Внешним для контура регулирования
является:	Скорости
	3. Внешним для контура регулирования напряжения
	якоря
	4 Внутренним для контура регулирования
	ЭДС

1. Какой регулятор обладает наибольшей	1. ПИ - регулятор
помехозащищенностью:	2. П - регулятор

	3. ПИД - регулятор
	4. И – регулятор
2.Основной недостаток параметрических	1. Сложность
СУ:	2. Громоздкость
	3. Высокая стоимость
	4. Невысокая точность
3. T _µ - это:	1. Постоянное запаздывание
·	преобразователя.
	2. Малая некомпенсируемая постоянная времени
	3. Время переходного процесса
	4. Время достижения регулируемой
	величины максимального значения
4. Максимальным быстродействием при	1. Двухконтурная система с П - регулятором скорости
регулировании скорости обладает:	2. Двухконтурная система с ПИ - регулятором скорост
	3. Одноконтурная система с
	ПИД - регулятором скорости
	4. Одноконтурная система с П - регулятором
5. В двухконтурной системе подчиненного	1. Внутренним для контура регулирования скорости
регулирования скорости контур регулирования ток	2. Внешним для контура регулирования
является:	скорости
	3. Внешним для контура регулирования напряжения
	якоря
	4 Внутренним для контура регулирования
	ЭДС

1. Настройка одноконтурной системы регулировани	1. И - регулятора скорости
скорости на модульный оптимум требует	2. ПИД - регулятора
использования:	3. П - регулятора
	4. ПИ – регулятора
2. Основное достоинство параметрических СУ:	1. Низкая стоимость и простота
	2. Малые габариты
	3. Высокое быстродействие
	4. Высокая точность
3. В статической САР для оценки точности	1. Постоянное входное воздействие
используют	2. Входное воздействие, изменяющееся по линейному
	закону
	3. Синусоидальное входное воздействие
	4. Ступенчатое воздействие
4. Стабилитроны в цепи обратной связи регулятора	1. Напряжение на якоре ЭД
скорости в системе подчиненного регулирования	2. Максимальную частоту вращения ЭД
ограничивают:	3. Ток якоря ЭД
	4. Магнитный поток ЭД

5. В контуре регулирования скорости	1. Напряжение питающей сети
основным возмущающим воздействием является:	2. Частота питающей сети
	3. Момент нагрузки
	4. Напряжение якоря ЭД
	4. Папряжение якоря Эд

1. Какой регулятор обладает наибольшей	1. ПИ - регулятор
помехозащищенностью:	2. П - регулятор
	3. ПИД - регулятор
	4. И – регулятор
2. Автоматическая СУ отличается от	1. Обратной связи
параметрической наличием:	2. Регулятора
	3. Управляемого преобразователя
	4. Датчиков измерения параметров системы
3. Электромагнитная постоянная времени ДПТ это	1. L _{яц} / R _{яц}
	2. U _{яц} / R _{яц}
	$3. R_{\rm HI} / L_{\rm HI}$
	$4. I_{\text{яц}} / R_{\text{яц}}$
4. Монотонный переходный процесс в замкнутой	1. <i>a</i> =2
системе обеспечивается при коэффициенте	2. <i>a</i> =1
настройки а равном:	3. $a \ge 4$
	4. 2< a < 4
5. В контуре регулирования скорости	1. Напряжение питающей сети
основным возмущающим воздействием является:	2. Частота питающей сети
	3. Момент нагрузки
	4. Напряжение якоря ЭД

1.Основной недостаток ПИД-регулятора:	1. Высокая стоимость
	2. Сложность практической реализации
	3. Сложность настройки параметров
	4. Низкая помехозащищенность
2.Основной недостаток параметрических	1. Сложность
СУ:	2. Громоздкость
	3. Высокая стоимость
	4. Невысокая точность
3. Быстродействие контура регулирования	1. Перерегулированием - σ
переменной определяется:	2. Временем переходного процесса - t _{пп}
	3. Временем достижения максимума регулируемой
	величины - t _м
	4. Временем первого согласования – t ₁
4. При каком значении коэффициента	1. <i>a</i> =1
$a = \frac{T_0}{T_\mu}$ обеспечивается настройка контура	2. <i>a</i> =2
	3. <i>a</i> =3
регулирования на технический	

(модульный) оптимум	4. a = 4
5. В контуре регулирования скорости	1. Напряжение питающей сети
основным возмущающим воздействием является:	2. Частота питающей сети
	3. Момент нагрузки
	4. Напряжение якоря ЭД

T	T
1.Передаточная функция ПИД-регулятора:	$1.\frac{T_up}{1+T_1p}$
	$2. \frac{1+T_{\kappa}p}{T_{u}p}$
	3. $\frac{1}{T_{up}}$
	4. $\frac{\frac{u^{p}}{(1+T_{2}p)(1+T_{1}p)}}{T_{u}p}$
2. В САР, построенной по принципу возмущения,	1. Положительная обратная связь по регулируемой
используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. T _µ - это:	1. Постоянное запаздывание
	преобразователя.
	2. Малая некомпенсируемая постоянная времени
	3. Время переходного процесса
	4. Время достижения регулируемой
	величины максимального значения
4. Координатой ЭП не является:	1. Ток якоря (статора) ЭД
	2. Частота вращения вала ЭД
	3. Положение вала ЭД
	4. Напряжение питающей сети
5. В контуре регулирования скорости	1. Напряжение питающей сети
основным возмущающим воздействием является:	2. Частота питающей сети
	3. Момент нагрузки
	4. Напряжение якоря ЭД

1.Передаточная функция ПИ-регулятора:	$1. \frac{K}{1+T_{\kappa P}}$
	$2. \frac{1+T_{\kappa}p}{T_{u}p}$
	$3. \frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_up}$
2. В САР, построенной по принципу отклонения,	1. Положительная обратная связь по регулируемой

используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. В САР с астатизмом первого порядка отсутствуе	1. Статическая ошибка по возмущению
	2. Установившаяся динамическая ошибка
	при изменении задающего воздействия по линейному
	закону
	3. Статическая ошибка по задающему воздействию
	4. Установившаяся динамическая ошибка
	при изменении возмущения по линейному закону
4. Максимальным быстродействием при	1. Двухконтурная система с П - регулятором скорости
регулировании скорости обладает:	2. Двухконтурная система с ПИ - регулятором скорост
	3. Одноконтурная система с
	ПИД - регулятором скорости
	4. Одноконтурная система с П - регулятором
5. В контуре регулирования скорости	1. Напряжение питающей сети
основным возмущающим воздействием является:	2. Частота питающей сети
	3. Момент нагрузки
	4. Напряжение якоря ЭД

1.Передаточная функция ПИД-регулятора:	$1.\frac{T_up}{1+T_1p}$
	$2.\frac{1+T_{\kappa}p}{T_{u}p}$
	$3. \frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_up}$
2.Основной недостаток параметрических	1. Сложность
СУ:	2. Громоздкость
	3. Высокая стоимость
	4. Невысокая точность
3. Электромагнитная постоянная времени ДПТ это	$1. L_{\text{H}} / R_{\text{H}}$
	2. U _{яц} / R _{яц}
	$3. R_{\text{HI}} / L_{\text{HI}}$
	$4. I_{HI} / R_{HI}$
4. Стабилитроны в цепи обратной связи регулятора	1. Напряжение на якоре ЭД
скорости в системе подчиненного регулирования	2. Максимальную частоту вращения ЭД
ограничивают:	3. Ток якоря ЭД
	4. Магнитный поток ЭД

5. В контуре регулирования тока якоря	1. Напряжение на якоре двигателя
возмущающим воздействием является:	2. Магнитный поток
	3. Частота вращения
	4. ЭДС двигателя

1.Передаточная функция ПИ-регулятора:	. K
1.Передаточная функция Пит-регулятора.	$1.\frac{K}{1+T_{\kappa}p}$
	$2. \frac{1+T_{\kappa}p}{T_{u}p}$
	3. $\frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_{up}}$
2. В САР, построенной по принципу возмущения,	1. Положительная обратная связь по регулируемой
используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. Быстродействие контура регулирования	1. Перерегулированием - σ
переменной определяется:	2. Временем переходного процесса - t _{пп}
	3. Временем достижения максимума регулируемой
	величины - $t_{\rm M}$
	4. Временем первого согласования – t ₁
4. Монотонный переходный процесс в замкнутой	1. <i>a</i> =2
системе обеспечивается при коэффициенте	2. <i>a</i> =1
настройки а равном:	3. $a \ge 4$
	4. 2< <i>a</i> < 4
5. В контуре регулирования тока якоря	1. Напряжение на якоре двигателя
возмущающим воздействием является:	2. Магнитный поток
	3. Частота вращения
	4. ЭДС двигателя

1. Настройка одноконтурной системы регулировани	1. И - регулятора скорости
скорости на модульный оптимум требует	2. ПИД - регулятора
использования:	3. П - регулятора
	4. ПИ – регулятора
2. В САР, построенной по принципу отклонения,	1. Положительная обратная связь по регулируемой
используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению

3. Т _µ - это:	1. Постоянное запаздывание
	преобразователя.
	2. Малая некомпенсируемая постоянная времени
	3. Время переходного процесса
	4. Время достижения регулируемой
	величины максимального значения
4. При каком значении коэффициента	1. <i>a</i> =1
$a = \frac{T_0}{T_\mu}$ обеспечивается настройка контура	2. <i>a</i> =2
	3. <i>a</i> =3
регулирования на технический	4. $a = 4$
(модульный) оптимум	
5. В контуре регулирования тока якоря	1. Напряжение на якоре двигателя
возмущающим воздействием является:	2. Магнитный поток
	3. Частота вращения
	4. ЭДС двигателя

1. Какой регулятор обладает наибольшей	1. ПИ - регулятор
помехозащищенностью:	2. П - регулятор
	3. ПИД - регулятор
	4. И – регулятор
2. Основное достоинство параметрических СУ:	1. Низкая стоимость и простота
	2. Малые габариты
	3. Высокое быстродействие
	4. Высокая точность
3. В САР с астатизмом первого порядка отсутствуе	1. Статическая ошибка по возмущению
	2. Установившаяся динамическая ошибка
	при изменении задающего воздействия по линейному
	закону
	3. Статическая ошибка по задающему воздействию
	4. Установившаяся динамическая ошибка
	при изменении возмущения по линейному закону
4. Координатой ЭП не является:	1. Ток якоря (статора) ЭД
	2. Частота вращения вала ЭД
	3. Положение вала ЭД
	4. Напряжение питающей сети
5. В контуре регулирования тока якоря	1. Напряжение на якоре двигателя
возмущающим воздействием является:	2. Магнитный поток
	3. Частота вращения
	4. ЭДС двигателя

1.Основной недостаток ПИД-регулятора:	1. Высокая стоимость
	2. Сложность практической реализации
	3. Сложность настройки параметров

	4. Низкая помехозащищенность
2. Автоматическая СУ отличается от	1. Обратной связи
параметрической наличием:	2. Регулятора
	3. Управляемого преобразователя
	4. Датчиков измерения параметров системы
3. В статической САР для оценки точности	1. Постоянное входное воздействие
используют	2. Входное воздействие, изменяющееся по линейному
	закону
	3. Синусоидальное входное воздействие
	4. Ступенчатое воздействие
4. Максимальным быстродействием при	1. Двухконтурная система с П - регулятором скорости
регулировании скорости обладает:	2. Двухконтурная система с ПИ - регулятором скорост
	3. Одноконтурная система с
	ПИД - регулятором скорости
	4. Одноконтурная система с П - регулятором
5. В контуре регулирования тока якоря	1. Напряжение на якоре двигателя
возмущающим воздействием является:	2. Магнитный поток
	3. Частота вращения
	4. ЭДС двигателя

1. Какой регулятор обладает наибольшей	1. ПИ - регулятор
помехозащищенностью:	2. П - регулятор
	3. ПИД - регулятор
	4. И – регулятор
2. В САР, построенной по принципу отклонения,	1. Положительная обратная связь по регулируемой
используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. Быстродействие контура регулирования	1. Перерегулированием - σ
переменной определяется:	2. Временем переходного процесса - t _{пп}
	3. Временем достижения максимума регулируемой
	величины - $t_{\rm M}$
	4. Временем первого согласования – t ₁
4. Стабилитроны в цепи обратной связи регулятора	1. Напряжение на якоре ЭД
скорости в системе подчиненного регулирования	2. Максимальную частоту вращения ЭД
ограничивают:	3. Ток якоря ЭД
	4. Магнитный поток ЭД

5. Наилучшей управляемостью по	1. Напряжения статора
скорости асинхронный двигатель	2. Сопротивления в цепи статора
обладает при регулировании:	3. Сопротивления в цепи ротора
	4. Частоты питающей сети

1.Основной недостаток ПИД-регулятора:	1. Высокая стоимость
	2. Сложность практической реализации
	3. Сложность настройки параметров
	4. Низкая помехозащищенность
2. Основное достоинство параметрических СУ:	1. Низкая стоимость и простота
	2. Малые габариты
	3. Высокое быстродействие
	4. Высокая точность
3. Т _µ - это:	1. Постоянное запаздывание
	преобразователя.
	2. Малая некомпенсируемая постоянная времени
	3. Время переходного процесса
	4. Время достижения регулируемой
	величины максимального значения
4. Монотонный переходный процесс в замкнутой	1. <i>a</i> =2
системе обеспечивается при коэффициенте	2. <i>a</i> =1
настройки а равном:	$3. a \ge 4$
	4. 2< a < 4
5. Наилучшей управляемостью по	1. Напряжения статора
скорости асинхронный двигатель	2. Сопротивления в цепи статора
обладает при регулировании:	3. Сопротивления в цепи ротора
	4. Частоты питающей сети

1.Передаточная функция ПИД-регулятора:	$1.\frac{T_up}{1+T_1p}$
	$2.\frac{1+T_{\kappa}p}{T_{u}p}$
	3. $\frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_up}$
2. Автоматическая СУ отличается от	1. Обратной связи
параметрической наличием:	2. Регулятора
	3. Управляемого преобразователя
	4. Датчиков измерения параметров системы
3. В САР с астатизмом первого порядка отсутствуе	1. Статическая ошибка по возмущению
	2. Установившаяся динамическая ошибка
	при изменении задающего воздействия по линейному

	закону
	3. Статическая ошибка по задающему воздействию
	4. Установившаяся динамическая ошибка
	при изменении возмущения по линейному закону
4. При каком значении коэффициента	1. <i>a</i> =1
$a = \frac{T_0}{T_\mu}$ обеспечивается настройка контура	2. <i>a</i> =2
·	3. <i>a</i> =3
регулирования на технический	4. a = 4
(модульный) оптимум	
5. Наилучшей управляемостью по	1. Напряжения статора
скорости асинхронный двигатель	2. Сопротивления в цепи статора
обладает при регулировании:	3. Сопротивления в цепи ротора
	4. Частоты питающей сети

1.Передаточная функция ПИ-регулятора:	$1.\frac{K}{1+T_{\kappa}p}$
	$2^{\frac{1+T_{\kappa}p}{\kappa}}$
	$\begin{bmatrix} 2 \cdot & T_{up} \\ & 1 \end{bmatrix}$
	3. $\frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_{up}}$
2.Основной недостаток параметрических	1. Сложность
СУ:	2. Громоздкость
	3. Высокая стоимость
	4. Невысокая точность
3. В статической САР для оценки точности	1. Постоянное входное воздействие
используют	2. Входное воздействие, изменяющееся по линейному
	закону
	3. Синусоидальное входное воздействие
	4. Ступенчатое воздействие
4. Координатой ЭП не является:	1. Ток якоря (статора) ЭД
	2. Частота вращения вала ЭД
	3. Положение вала ЭД
	4. Напряжение питающей сети
5. Наилучшей управляемостью по	1. Напряжения статора
скорости асинхронный двигатель	2. Сопротивления в цепи статора
обладает при регулировании:	3. Сопротивления в цепи ротора
	4. Частоты питающей сети

1. Настройка одноконтурной системы регулировани	1. И - регулятора скорости
скорости на модульный оптимум требует	2. ПИД - регулятора
использования:	3. П - регулятора
	4. ПИ – регулятора
2. В САР, построенной по принципу возмущения,	1. Положительная обратная связь по регулируемой

используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. Электромагнитная постоянная времени ДПТ это	1. $L_{\text{HI}} / R_{\text{HI}}$
	$2.~\mathrm{U}_{\mathrm{AL}}$ / R_{AL}
	$3. R_{\rm HI} / L_{\rm HI}$
	$4. I_{\text{H}} / R_{\text{H}}$
4. Максимальным быстродействием при	1. Двухконтурная система с П - регулятором скорости
регулировании скорости обладает:	2. Двухконтурная система с ПИ - регулятором скорост
	3. Одноконтурная система с
	ПИД - регулятором скорости
	4. Одноконтурная система с П - регулятором
5. Наилучшей управляемостью по	1. Напряжения статора
скорости асинхронный двигатель	2. Сопротивления в цепи статора
обладает при регулировании:	3. Сопротивления в цепи ротора
	4. Частоты питающей сети

1.Передаточная функция ПИ-регулятора:	$1.\frac{K}{1+T_{\kappa}p}$
	$2.\frac{1+T_{\kappa}p}{T_{u}p}$
	$3. \frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_up}$
2. Автоматическая СУ отличается от	1. Обратной связи
параметрической наличием:	2. Регулятора
	3. Управляемого преобразователя
	4. Датчиков измерения параметров системы
3. Т _µ - это:	1. Постоянное запаздывание
	преобразователя.
	2. Малая некомпенсируемая постоянная времени
	3. Время переходного процесса
	4. Время достижения регулируемой
	величины максимального значения
4. Стабилитроны в цепи обратной связи регулятора	1. Напряжение на якоре ЭД
скорости в системе подчиненного регулирования	2. Максимальную частоту вращения ЭД
ограничивают:	3. Ток якоря ЭД
	4. Магнитный поток ЭД
5. Наибольшей управляемостью по	1. Магнитного потока
скорости двигатель постоянного тока обладает при	2. Тока якоря
регулировании:	3. Напряжения возбуждения
	4. Напряжения на якоре

1. Настройка одноконтурной системы регулировани	1. И - регулятора скорости
скорости на модульный оптимум требует	2. ПИД - регулятора
использования:	3. П - регулятора
	4. ПИ – регулятора
2.Основной недостаток параметрических	1. Сложность
СУ:	2. Громоздкость
	3. Высокая стоимость
	4. Невысокая точность
3. В САР с астатизмом первого порядка отсутствуе	1. Статическая ошибка по возмущению
	2. Установившаяся динамическая ошибка
	при изменении задающего воздействия по линейному
	закону
	3. Статическая ошибка по задающему воздействию
	4. Установившаяся динамическая ошибка
	при изменении возмущения по линейному закону
4. Монотонный переходный процесс в замкнутой	1. <i>a</i> =2
системе обеспечивается при коэффициенте	2. <i>a</i> =1
настройки а равном:	3. $a \ge 4$
	4. 2< <i>a</i> < 4
5. Наибольшей управляемостью по	1. Магнитного потока
скорости двигатель постоянного тока обладает при	2. Тока якоря
регулировании:	3. Напряжения возбуждения
	4. Напряжения на якоре

1. Какой регулятор обладает наибольшей	1. ПИ - регулятор
помехозащищенностью:	2. П - регулятор
	3. ПИД - регулятор
	4. И – регулятор
2. В САР, построенной по принципу возмущения,	1. Положительная обратная связь по регулируемой
используется:	переменной
	2. Отрицательная обратная связь по регулируемой
	переменной
	3. Положительная обратная связь по возмущению
	4. Отрицательная обратная связь по
	возмущению
3. В статической САР для оценки точности	1. Постоянное входное воздействие
используют	2. Входное воздействие, изменяющееся по линейному
	закону
	3. Синусоидальное входное воздействие
	4. Ступенчатое воздействие
4. При каком значении коэффициента	1. <i>a</i> =1

$a = \frac{T_0}{T_\mu}$ обеспечивается настройка контура	2. <i>a</i> =2 3. <i>a</i> =3
регулирования на технический	4. a = 4
(модульный) оптимум	
5. Наибольшей управляемостью по	1. Магнитного потока
скорости двигатель постоянного тока обладает при	2. Тока якоря
регулировании:	3. Напряжения возбуждения
	4. Напряжения на якоре

1.Основной недостаток ПИД-регулятора:	1. Высокая стоимость			
	2. Сложность практической реализации			
	3. Сложность настройки параметров			
	4. Низкая помехозащищенность			
2. В САР, построенной по принципу отклонения,	1. Положительная обратная связь по регулируемой			
используется:	переменной			
	2. Отрицательная обратная связь по регулируемой			
	переменной			
	3. Положительная обратная связь по возмущению			
	4. Отрицательная обратная связь по			
	возмущению			
3. Электромагнитная постоянная времени ДПТ это	1. $L_{\text{яц}} / R_{\text{яц}}$			
	2. $U_{\text{яц}} / R_{\text{яц}}$			
	$3. R_{\rm HI} / L_{\rm HI}$			
	4. $I_{\text{яц}} / R_{\text{яц}}$			
4. Координатой ЭП не является:	1. Ток якоря (статора) ЭД			
	2. Частота вращения вала ЭД			
	3. Положение вала ЭД			
	4. Напряжение питающей сети			
5. Наибольшей управляемостью по	1. Магнитного потока			
скорости двигатель постоянного тока обладает при	2. Тока якоря			
регулировании:	3. Напряжения возбуждения			
	4. Напряжения на якоре			

1.Передаточная функция ПИД-регулятора:	$1. \frac{T_{up}}{1+T_{1p}}$
	$2.\frac{1+T_{\kappa}p}{T_{u}p}$
	$3. \frac{1}{T_{up}}$
	4. $\frac{(1+T_2p)(1+T_1p)}{T_up}$
2. Основное достоинство параметрических СУ:	1. Низкая стоимость и простота
	2. Малые габариты
	3. Высокое быстродействие
	4. Высокая точность

3. Быстродействие контура регулирования	1. Перерегулированием - σ				
переменной определяется:	2. Временем переходного процесса - t _{пп}				
	3. Временем достижения максимума регулируемой				
	величины - t_{M}				
	4. Временем первого согласования – t ₁				
4. Максимальным быстродействием при	1. Двухконтурная система с П - регулятором скорости				
регулировании скорости обладает:	2. Двухконтурная система с ПИ - регулятором скорост				
	3. Одноконтурная система с				
	ПИД - регулятором скорости				
	4. Одноконтурная система с П - регулятором				
5. Наибольшей управляемостью по	1. Магнитного потока				
скорости двигатель постоянного тока обладает при	2. Тока якоря				
регулировании:	3. Напряжения возбуждения				
	4. Напряжения на якоре				

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волжский Государственный Университет Водного Транспорта»

Специальность 26.05.07	«Эксплуатация судового	электрооборудования и средств
	автоматики»	

Оценочные средства по дисциплине «Моделирование судового электрооборудования и средств автоматики»

Заведующий кафедрой Э и ЭОВТ

Хватов О.С.

JP/-

Н.Новгород

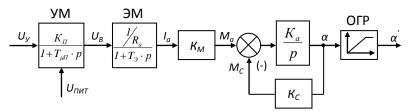
2024Γ.

І. Лабораторные работы

Лабораторная работа 1. Тема "Моделирование систем стабилизации частоты вращения дизель-генератора"

Применение средств моделирования в судовых электроэнергетических системах, Техеическое использование, обслуживание судовой компьютерной информационной систкмы, Управление проектом на всех этапах его жизненного цикла.формирует компетенции ПК-9,УК-2, A-III/6-2.1.,A-III/6-2.2.

ЗАДАНИЕ НА МОДЕЛИРОВАНИЕ СИСТЕМ СТАБИЛИЗАЦИИ ЧАСТОТЫ ВРАЩЕНИЯ ДГ-АГРЕГАТА


Моделирование одноконтурной системы стабилизации частоты вращения ДГ-агрегата

- 3.1.1. По данным, приведенным в табл. 3.1 рассчитать и составить структурную схему актуатора (рис. 2.2a).
- 3.1.2. Задавая на входе актуатора ступенчатое воздействие $(0,1~U_{\text{Уmax}})$ получить переходную характеристику $\alpha = f(t)$, по которой определить коэффициент передачи и постоянные времени актуатора представив его апериодическим звеном второго порядка.
- 3.1.3. Рассчитать параметры и собрать структурную схему модели системы стабилизации частоты вращения ДГ-агрегата (рис. 2.2). Для задания передаточной функции актуатора использовать результаты, полученные в п.3.1.2.
- 3.1.4. Рассчитать параметры ПД-регулятора частоты вращения, компенсирующего механическую постоянную времени актуатора и обеспечивающего получение переходного процесса соответствующего настройке контура на модульный оптимум.
- 3.1.5. Задать на входе системы ступенчатое воздействие равное $0.1\,\mathrm{U}_{3\mathrm{max}}$, установив после задатчика апериодическое звено с постоянной времени T=0,001 с. Оценить переходный процесс при отсутствии ограничителя на выходе актуатора и при необходимости скорректировать параметры регулятора частоты вращения.
 - 3.1.6. Повторить п.3.1.5 при наличии ограничителя угла поворота актуатора.
- 3.1.7. Для скорректированной системы сформировать на входе линейно нарастающее задающее воздействие, имитирующее режим разгона ДГ-агрегата. Установить время разгона до ω_{max} =0,5 с, и сохранить апериодическое звено на выходе задатчика, увеличив его постоянную времени до 0,02 с. Определить статическую и установившуюся динамическую ошибки по задающему воздействию.
- 3.1.8. Ввести в систему возмущающее воздействие в виде скачка момента нагрузки M_H составляющего 0,6 и 0,8 от величины номинального момента дизеля M_{HZ} . Проанализировать влияние нагрузки на точность поддержания частоты вращения.
- 3.1.9. Оценить влияние увеличения коэффициента пропорционального усиления и уменьшения постоянной времени дифференцирования регулятора на изменение основных параметров переходного процесса.
- 3.1.10. Рассчитать параметры ПИД-регулятора частоты вращения для настройки системы на модульный оптимум и выполнить п.3.1.5 и 3.1.6 задания.
 - 3.1.11. Выполнить п.3.1.7 и 3.1.8 задания для ПИД-регулятора частоты вращения.
- 3.1.12. Оценить влияние увеличения коэффициента пропорционального усиления и уменьшения постоянной времени интегрирования регулятора на изменения основных показателей переходного процесса.

3.1.13. Сделать заключение по результатам моделирования одноконтурной системы.

Рис. 2.2а. Структурная схема актуатора

Смотри методическое указание к выполнению лабораторной работы «Моделирование

элементов судовых электроэнергетических систем»

Таблица заданий по вариантам

		Предпоследняя цифра зачетной книжки									
Параметр	Размерность	т		3	4	5	6	.7	8	9	0
		1	2		24	36	48	24	36	48	24_
U_{II}	[B]	24	36	48		0,004	0,005	0,006	0,006	0,004	0,005
$T_{\mu\Pi}$	[c]	0,006	0,005	0,004	0,005		2,3	2,0	2,2	2,4	1,9
R_a	[OM]	1,8	2,0	2,2	1,9	2,1		0,021	0,024	0,027	0,02
	[Гн]	0,02	0,022	0,025	0,02	0,023	0,028	0,021	0,15	0,11	0,19
$\frac{L_a}{\nu}$	[H·m/a]	0,018	0,12	0,11	0,19	0,13	0,12		4,9	4,6	5,0
K _M	[рад/(H·м)]	4,9	4,8	5,0	4,7	4,9	5,1	4,8	0,43	0,41	0,39
K_q	[Н-м/рад]	0,4	0,4	0,42	0,44	0,45	0,45	0,44	0,43	V, **	
K _C	TT M/Patt	1									
		Последняя цифра зачетной книжки									
Параметр	Размерность		1 2	3	1 4	5	6	7	8	9	
		1		220	120	180	180	280	165	280	16:
P_{AH}	[кВт]	120	220		1000	1500	1000	1500	1500	1000	100
n_H	[об/мин]	1500	1000	1500		0,09	0,08	0,09	0,1	0,08	0,
M_{CII}	[o.e.]	0,09	0,08	0,09	0,1	5	5	6	7	7	6
T_C	[MC]	6	5	7	5	1 7	111	8	9	111	12
N N	[имп/рад]	8	12	9	13			3,0	2,5	3,2	2,
$\frac{T_{II}}{T_{II}}$	[c]	2,4	2,8	2,9	2,6	2,7	3,0	3,0	1 2,5	1	-1