Документ подписан простой электронной подписью Информация о владельце: ФИО: Новиков Денис Владимирович Тест 1 Должность: Директор филиала Дата подписания: 11.11.2024 11:16:01 Уникальный программный кжоч: 3357c68ce48ec4f695c95289ac7a9678e502be60

2). В активную зону горения вводится ____% воздуха, поступающего из компрессора.

3). Идеальной цикл ГТУ в p-v координатах имеет вид

4). Цикл реальной ГТУ в Т-Ѕ координатах имеет вид

5). В Т-Ѕ координатах представлен цикл

- 1. с промежуточным подогревом
- 2. с промежуточным охлаждением
- 3. с регенерацией теплоты

6). Степень повышения давления в компрессоре определяется по формуле _____

7). ГТУ с раздельным теплоперепадом выполняется с целью с целью

- 1. с целью упрощения конструкции
- 2. снижения мощности потребляемой компрессором
- 3. уменьшения тепловой напряженности лопаток турбины
- 4. устранения жесткой связи между компрессором, турбиной и гребным винтом

8). На Т-Ѕдиаграмме цикла ГТУ процесс 1-2 изображает

- 1. отвод теплоты
- 2. подвод теплоты
- 3. расширение в турбине
- 4. сжатие в компрессоре

9). На Т-Ѕдиаграмме цикла ГТУ с регенерацией теплоты подогрев воздуха в регенераторе изображается процессом _____

10). В схему ПТУ закрытого цикла последовательно включены: паровой котел -_____

- 1. Теоретическая работа 1 кг пара (располагаемый теплоперепад) определяется по формуле _____
- 2. В цикле ПТУ Процесс Изображение на диаграмме 1. нагрев воды до кипения 2. конденсация пара A 1-2 3. перегрев пара Б 1-2д 4. парообразование B 2-3' Г 3'-3 5. подача воды насосом 6. расширение в турбине Д 3-4 E 4-5 Ж 5-1

Ответы: 1__, 2__, 3__, 4__, 5__, 6__.

- 3. Идеальный цикл Ренкина имеет вид
- 4. Если при Р₁=const повысить температуру пара, то КПД установки
- 1. уменьшается
- 2. остается постоянным
- 3. возрастает
- 5. В схему ПТУ закрытого цикла последовательно включены: паровой котел -
- 6. При снижении давления в конденсаторе теплоперепад
 - 1. уменьшается
 - 2. остается постоянным
 - 3. возрастает
- 7. Промежуточный перегрев пара осуществляется
 - 1. после котла
 - 2. после турбины высокого давления
 - 3. после турбины низкого давления
- 8. КПД предельного регенеративного цикла, в данном интервале температур
 - 1. равен КПД идеального цикла Ренкина
 - 2. равен КПД реального цикла
 - 3. максимально возможный
 - 4. минимальный

9. Предельный регенеративный цикл установки, работающей на перегретом паре, имеет вид

- Сопловой аппарат турбины предназначен для преобразования
 кинетической в механическую

 - 2. кинетической в потенциальную
 - потенциальной в кинетическую
 потенциальной в механическую

1). Неподвижный лопаточный аппарат турбины называется _____

2). Скорость потока в соплах

- 1. увеличивается
- 2. остается постоянной
- 3. уменьшается

3). На рабочих лопатках турбины происходит преобразование энергии

- 1. кинетической в механическую
- 2. потенциальной в механическую
- 3. потенциальной в кинетическую
- 4. кинетической в потенциальную

4). Принцип силового воздействия потока, при котором усилие на рабочих лопатках турбины является следствием поворота в каналах называется

5). В активной ступени турбины давление потока падает

- 1. только в соплах
- 2. только на рабочих лопатках
- 3. в соплах и на рабочих лопатках

6). Принцип силового воздействия потока, при котором усилие на рабочих лопатках возникает из-за ускорения потока в рабочих каналах, при расширении рабочего тела, называется

7). В реактивной ступени турбины давление потока падает

- 1. только в соплах
- 2. только на рабочих лопатках
- 3. в соплах и на рабочих лопатках

8). На направляющих лопатках компрессорной ступени происходит преобразование энергии

- 1. кинетической в механическую
- 2. кинетической в потенциальную
- 3. потенциальной в кинетическую
- 4. потенциальной в механическую
- 5. механической в кинетическую
- 6. механической в потенциальную
- 9). На рабочих лопатках компрессора происходит преобразование энергии
 - 1. кинетической в механическую
 - 2. кинетической в потенциальную
 - 3. потенциальной в кинетическую
 - 4. потенциальной в механическую
 - 5. механической в кинетическую
 - 6. механической в потенциальную

10). График изменения скорости и давления в компрессорной ступени имеет вид

- 1). Степень понижения давления в турбине определяется по формуле
- 2). ГТУ с раздельным потоком газа выполняется с целью с целью
 - 1. устранения жесткой связи между компрессором, турбиной и гребным винтом
 - 2. уменьшения тепловой напряженности лопаток турбины
 - 3. снижения мощности потребляемой компрессором
 - 4. с целью упрощения конструкции

3). На Т-Ѕдиаграмме цикла ГТУ процесс 4-1 изображает

- 1. сжатие в компрессоре
- 2. расширение в турбине
- 3. подвод теплоты
- 4. отвод теплоты

4). На Т-Ѕдиаграмме цикла ГТУ с регенерацией теплоты отвод теплоты от газов в регенераторе изображается процессом

5). В схему ПТУ закрытого цикла последовательно включены: паровой котел -____

6). Идеальный цикл Ренкина имеет вид

7). В цикле ПТУ

Процесс

Изображение на диаграмме 1. нагрев воды до кипения 2. конденсация пара A 1-2 3. перегрев пара Б 1-2д В 2д-3' 4. парообразование 5. подача воды насосом Γ 3'-3 6. расширение в турбине Д 3-4 E 4-5 Ж 5-1

Ответы: 1__, 2__, 3__, 4__, 5__, 6__.

8). Теоретическая работа 1 кг пара (располагаемый теплоперепад) определяется по формуле _____

- 9). Если при Р₁=const повысить температуру пара, то КПД установки
 - 1. уменьшается
 - 2. остается постоянным
 - 3. возрастает
- 10). Если при T₁=const увеличить давление P₁, то конечная влажность пара
 - 1. уменьшается
 - 2. остается постоянной
 - 3. возрастает

- 1). При снижении давления в конденсаторе теплоперепад
 - 1. уменьшается
 - 2. остается постоянным
 - 3. возрастает
- 2). Промежуточный перегрев пара осуществляется
 - 1. после котла
 - 2. после турбины высокого давления
 - 3. после турбины низкого давления

3). Предельный регенеративный цикл установки, работающей на сухом насыщенном паре, имеет вид

- 4). КПД предельного регенеративного цикла, в данном интервале температур
 - 1. равен КПД идеального цикла Ренкина
 - 2. равен КПД реального цикла
 - 3. максимально возможный
 - 4. минимальный
- 5). 1 Сопловой аппарат турбины предназначен для преобразования
 - 1. кинетической в механическую
 - 2. потенциальной в механическую
 - 3. потенциальной в кинетическую
 - 4. кинетической в потенциальную
- 6). Неподвижный лопаточный аппарат турбины называется ______
- 7). Скорость потока в соплах
 - 1. увеличивается
 - 2. остается постоянной
 - 3. уменьшается
- 8). На рабочих лопатках турбины происходит преобразование энергии
 - 1. кинетической в механическую
 - 2. потенциальной в механическую
 - 3. потенциальной в кинетическую
 - 4. кинетической в потенциальную

9). Принцип силового воздействия потока, при котором усилие на рабочих лопатках турбины является следствием поворота в каналах называется

10). В активной ступени турбины давление потока падает

- 1. только в соплах
- 2. только на рабочих лопатках
- 3. в соплах и на рабочих лопатках

Контрольные вопросы к зачету

по дисциплине "Судовые турбомашины"

- 1. Принцип действия ГТУ.
- 2. ГТУ открытого цикла. Схема. Изображение в р-v и Т-S координатах.
- 3. ГТУ закрытого цикла. Схема. Изображение в р-v и Т-S координатах.
- 4. Цикл реальной ГТУ. Схема. Тепловая диаграмма.
- 5. Цикл ГТУ с регенерацией теплоты. Схема. Тепловая диаграмма.
- 6. Цикл ГТУ с промежуточным охлаждением воздуха при сжатии и регенерацией теплоты. Схема. Тепловая диаграмма.
- Цикл ГТУ с промежуточным подогревом и регенерацией теплоты. Схема. Тепловая диаграмма.
- 8. ГТУ с раздельным перепадом теплоты. Схема. Тепловая диаграмма.
- 9. ГТУ с раздельным потоком газа. Схема. Тепловая диаграмма.
- 10.ПТУ открытого цикла. Схема. Изображение в и Т-Ѕ координатах.
- 11.ПТУ закрытого цикла. Схема. Изображение в и Т-Ѕ координатах.
- 12. Методы повышения эффективности ПТУ.
- 13.ПТУ с промежуточным перегревом пара. Схема. Изображение в и T-S координатах.
- 14.Классификация турбин. Сравнение их с ДВС.
- 15. Принцип действия турбины. Схема одноступенчатой турбины.
- 16. Принцип силового воздействия на лопатках активной турбины.
- 17. Активные турбины. График изменения давления и скорости абсолютной и относительной.
- 18. Принцип силового воздействия на лопатках реактивной турбины.
- 19. Реактивные турбины. График изменения давления и скорости абсолютной и относительной.
- 20.План скоростей активной турбины.
- 21.План скоростей реактивной турбины.
- 22.Степень реактивности и характеристика турбинной ступени.

- 23. Многоступенчатая активная турбина со ступенями давления.
- 24. Многоступенчатая реактивная турбина со ступенями давления.
- 25. Многоступенчатая турбина со ступенями скорости.
- 26. Принцип действия осевого компрессора.
- 27. Принцип действия центробежного компрессора.
- 28.Степень реактивности компрессорной ступени.
- 29. Треугольники скоростей компрессорной ступени.
- 30. Неустойчивая работа компрессорной ступени.
- 31. Многоступенчатый осевой компрессор.

Федеральное агентство морского и речного транспорта Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта»

Кафедра эксплуатации судовых энергетических установок

Ю. В. Варечкин, М.Ю. Храмов

Расчет и проектирование судовой паровой турбины

Нижний Новгород 2022 Федеральное агентство морского и речного транспорта Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта»

Кафедра эксплуатации судовых энергетических установок

Расчет и проектирование судовой паровой турбины

Методические рекомендации к выполнению курсовой работы для обучающихся по направлению подготовки 26.05.06 «Эксплуатация судовых энергетических установок смешенного (река-море) плавания»

Составители – Ю.В. Варечкин, М.Ю. Храмов

Нижний Новгород Издательство ФГБОУ ВО «ВГУВТ» 2022

УДК 621.115 B18

Рецензент – проф., д.т.н. Ю.И.Матвеев

Расчет ступени паровой турбины: метод. рекомендации к выполнению курсовой работы для студентов специальности 26.05.06 «Эксплуатация судовых энергетических установок смешенного река-море плавания» / сост. – Ю.В. Варечкин, М.Ю Храмов. – Н. Новгород: Изд-во ФГБОУ ВО «ВГУВТ», 2022. – с.

Рассмотрены основы расчета паровой турбомашины, ступени скорости, активной ступени и ступени, работающей в области влажного пара необходимые при освоении дисциплины «Судовые турбомашины».

Для студентов очного и заочного обучения.

Работа рекомендована к изданию кафедрой эксплуатации судовых энергетических установок (протокол № <u>8</u> от <u>2.06.22</u>)

© ФГБОУ ВО «ВГУВТ», 2022

Введение

Методические указания содержат подробный и полный алгоритм расчетов для выполнения курсовой работы на примере расчета однопоточной конденсационной турбины мощностью 50 МВт с параметрами острого пара 8,8 МПа и 535 °C.

Алгоритм включает определение конструкции турбины, отборов, количества нерегулируемых построение процесса расширения пара в hs диаграмме, разработку схемы проточной части; подробный расчет двухвенечной ступени скорости с определением всех параметров и выбором типа профилей, детальный расчет первой и последней нерегулируемых ступеней; прочность рабочих лопаток последней ступени; расчет на выполнение эскизов ступени скорости, крутки лопаток последней ступени.

Выбор исходных данных для выполнения курсовой работы.

Исходные данные для выполнения курсовой работы выбираются по вариантам из таблицы, приведенной в приложении 1.

Студенты выбирают вариант задания на расчетную работу (табл. 1) по последней цифре своего шифра и в соответствии с номером группы, которая устанавливается в зависимости от начальной буквы фамилии студента:

Р, Т, У, Ц, - І группа; Л, М, Н, - II группа; Е, Ж, З, И, - III группа; А, Г, Д, Щ, - IV группа; Б, Ч, Ш -V группа; В, П, Х -VI группа; К, О, Ю, Я -VII группа; С, Ф, Э -VIII группа.

Группа		Последняя цифра шифра										
	1	2	3	4	5	6	7	8	9	0		
Ι	1	2	3	4	5	6	7	8	9	10		
II	11	12	13	14	15	16	17	18	19	20		
III	21	22	23	24	25	26	27	28	29	30		
IV	31	32	33	34	35	36	37	38	39	40		
V	41	42	43	44	45	46	47	48	49	50		
VI	51	52	53	54	55	56	57	58	59	60		
VII	61	62	63	6	65	66	67	68	69	70		
VIII	71	72	73	74	75	76	77	78	79	80		

Таблица 1. Выбор варианта задания

1. Исходные данные

- 1. Номинальная электрическая мощность, *N*_э, MBт.
- 2. Начальные параметры пара, p, бар (МПа); t_0 , °С.
- 3. Давление отработавшего пара, *p*_к, бар (кПа).
- 4. Температура питательной воды, $t_{пв}$, °С.
- 5. Частота вращения, n, c^{-1} .

6. Схема системы регенерации - 2ПВД+Д+ЗПНД (два подогревателя высокого давления, три подогревателя низкого давления и один деаэратор).

Пример

	1. Номинальная электрическая мощность	
$N_{\mathfrak{I}}$	_	50 Вт.
	2. Начальные параметры пара:	
	давление р	8,8 МПа (88 бар).
	температура t_0	535 °С.
	3. Давление отработавшего пара <i>р</i> к	3,5 кПа.
	4. Температура питательной воды <i>t</i> _{пв}	216°C.
	5. Частота вращения <i>n</i>	$50 c^{-1}$.
	6. Схема системы регенерации	2ПВД+ Д+ 3ПНД.

2. Выбор конструкции турбины

Для паровых конденсационных турбин мощностью до ≈60 МВт может быть принята однопоточная однокорпусная конструкция.

1. Потери давления в стопорном и регулирующем клапанах, Мпа:

$$\Delta p_0 = (0,03 \dots 0,05) \cdot p. \tag{1}$$

2. Давление пара на входе в ступень турбины, МПа:

$$p_0 = p - \Delta p_0. \tag{2}$$

3. Энтальпию $h_0\left(\frac{\kappa \Delta m}{\kappa r}\right)$, энтропию $s_0\left(\frac{\kappa \Delta m}{\kappa r \cdot \kappa}\right)$ и удельный объем $v_0\left(\frac{m^3}{\kappa r}\right)$ пара перед ступенью (на входе), определяют по *hs* диаграмме (приложение 5) по известным начальным давлению p_0 (бар) и температуре t_0 (⁰C).

4. Строится адиабатный процесс расширения пара в *hs* диаграмме и определяется энтальпия пара на выходе из турбины $h_{\kappa}\left(\frac{\kappa \Delta \pi}{\kappa_{\Gamma}}\right)$ (по давлению p_{κ} (бар) и энтропии $s_0\left(\frac{\kappa \Delta \pi}{\kappa_{\Gamma}\cdot \kappa}\right)$.

5. Располагаемый теплоперепад в турбине,
$$\frac{\kappa \Delta \pi}{\kappa \Gamma}$$
:
 $H_0 = h_0 - h_{\kappa}$. (3)

6. Предварительное определение количества ступеней турбины.

Рекомендуется принимать следующие значения теплоперепада на разных ступенях турбины:

для двухвенечной ступени скорости – 100...250 кДж/кг;

для активных ступеней средних давлений – 40...50 кДж/кг;

для последних ступеней турбины, работающих, как правило, в зоне влажного пара – 70...120 кДж/кг.

В двух последних случаях большие значения – для меньших давлений.

Принимается теплоперепад для ступеней турбины:

для регулирующей ступени скорости – $H_0^{\text{per}}, \frac{\kappa \Delta \pi}{\kappa r};$ для активных (остальных) ступеней – $H_0^a, \frac{\kappa \Delta \pi}{\kappa r}$. Предварительная оценка числа ступеней, шт.:

$$z = \frac{H_0 - H_0^{\text{per}}}{H_0^a}.$$
 (4)

Общее число ступеней:

$$Z=z+1.$$
 (5)

7. Схема турбины.

Под схемой турбины понимается характер проточной части, которая содержит определенное количество ступеней и все нерегулируемые отборы, которые должны быть сформировать для заданной турбины. Для этого предварительно надо составить схему регенерации с указанием всех параметров отбора и всех подогревателей, которые необходимы.

Заданы два подогревателя высокого давления, три подогревателя низкого давления и один деаэратор. Задача состоит в равномерном распределении всех необходимых теплоперепадов, которые на каждый подогреватель должны быть поданы и обеспечены.

При определении нерегулируемых отборов можно пользоваться следующими рекомендациями:

• Нагрев воды в регенеративных подогревателях допустимо принимать на уровне: для группы ПВД – 30...35 °С в каждом подогревателе; для группы ПНД – 20...30 °С в каждом подогревателе.

• Процесс передачи теплоты в подогревателях осуществляют при постоянном давлении в условиях конденсации пара, т.е. при температуре насыщения $t_{\rm H}$.

• Для подогревателей поверхностного типа следует учитывать недогрев воды на уровне 4°С.

• Нагрев воды в деаэраторе допустимо принимать на уровне 20...30 °C. Собственно деаэратор относить к группе подогревателей низкого давления (ПНД).

• Деаэратор является подогревателем смешивающего типа и здесь недогрев воды отсутствует. Передача теплоты идет при температуре насыщения при давлении деаэрации. Рекомендовано принять давление 6 бар ($t_{\rm H} \approx 160$ °C) или 7 бар ($t_{\rm H} \approx 165$ °C), но возможно отклонение от рекомендации.

• Верхний (наиболее высокое давление) отбор должен обеспечить заданную температуру питательной воды с учетом недогрева.

• Большее число подогревателей необходимо для более высокой температуры питательной воды.

• При наличии в схеме подогревателей высокого давления и деаэратора, пар на деаэратор отбирают из ближнего ПВД через редукционно-охладительную установку (РОУ). Это делают для снижения числа отборов из турбины.

Для заданных условий необходимо определить схему регенерации; параметры основного конденсата и питательной воды; параметры в отборах.

При этом необходимо помнить, что, подогрев питательной воды в подогревателях осуществляется за счет того, что пар, отбираемый из турбины, отправляется в устройство, где в процессе конденсации обеспечивается передача теплоты питательной воде. Процесс конденсации происходит при постоянном давлении и постоянной температуре. Постоянство давления обеспечивается тем параметром отбора, который должен быть сформировать.

На *hs* - диаграмме отмечают давления нерегулируемых отборов, и по диаграмме определяют теплоперепады между нерегулируемыми отборами при адиабатном процессе расширения.

Затем уточняют число ступеней между отборами. Следует помнить о плавности расширения проточной части турбины (обусловливает постепенное увеличение теплоперепада на каждую последующую группу ступеней) и о наличии после последнего отбора группы ступеней.

Для активных ступеней теплоперепад на ступень может находится в пределах 50...60 кДж/кг. Для ступеней, работающих в области влажного пара теплоперепад, может приниматься 70...120 кДж/кг. Задача состоит в том, чтобы спрофилировать и спроектировать проточную часть турбины таким образом, чтобы теплоперепад от начала процесса расширения к окончанию процесса расширения постепенно увеличивался. Рекомендуется принимать в начале процесса расширения (до первого отбора пара) на уровне 40 кДж/кг, постепенно увеличивать в средне части (до второго и третьего отбора пара) до 50...60 кДж/кг и в конце процесса расширения брать на уровне 90...110 кДж/кг.

Это позволяет уточнить число ступеней.

Затем формируются характеристики отборов и число ступеней с точки зрения распределения по теплоперепаду между отборами. Эти данные собираются в таблицу.

На участке параметров от начальных параметров до первого отбора теплоперепад можно определить в соответствии с диаграммой $h_0 - h_1$ (в первом отборе).

8. Определение доли пара на регенерацию в отборах и на турбину в целом

Количество пара на регенерацию (*R*-отборы) обычно не превышает 25...35% от общего расхода пара в голову турбины.

Предварительный расход пара на турбину определяют на основании уравнения энергетического баланса, кг/с:

$$G_0 = m \frac{N_3}{H_0 \cdot \eta_{0i}}.$$
(6)

где m = 1, 2...1, 25 — учитывает недовыработку теплотой электроэнергии (большие значения для турбин с развитой системой регенерации);

η_{0i} – внутренний относительный КПД турбины (в первом приближении принимают на уровне 0,8...0,9).

Примем, что количество пара на регенерацию оставляет 30%. Эти 30% делятся на две составляющие поровну. Одна составляющая на уровне 15% на ПВД и вторая составляющая на уровне 15% на ПНД+Д. В относительных доля это буден 0, 15 в обоих случаях.

Расходы пара в отборах сводятся в таблицу.

Пример

1. Потери давления в стопорном и регулирующем клапанах

$$\Delta p_0 = 0.045 \cdot 8.8 = 0.4$$
 MII.

2. Давление пара на входе в ступень турбины $p_0 = 8,8 - 0,4 = 8,4$ МПа.

3. При давлении пара $p_0 = 8,4$ МПа (84 бар) и температуре $t_0 = 535^{\circ}$ С энтальпия $h_0 = 3480 \frac{\kappa \beta \pi}{\kappa r}$, энтропия $s_0 = 6,8 \frac{\kappa \beta \pi}{\kappa r \cdot K}$, удельный объем $v_0 = 0,042 \frac{m^3}{\kappa r}$ (точка **0** рис.1).

Рис. 1. Определение параметров в точке О

4. Строим адиабатный процесс расширения пара (рис. 2), получаем точку *К*.

При давлении конденсации (давление отработавшего пара) $p_{\kappa} = 3,5 \ \kappa \Pi a (0,035 \mbox{бар})$ энтальпия пара на выходе из турбины $h_{\kappa} = 2035 \ \frac{\kappa \# \pi}{\kappa r}$, удельный объем $v_{\kappa} = 35 \ \frac{m^3}{\kappa r}$.

5. Располагаемый теплоперепад в турбине

$$H_0 = 3480 - 2035 = 1445 \frac{\kappa \#}{\kappa \Gamma}.$$

Рис. 2. Процесс расширения пара в турбине в *hs* диаграмме (первый этап)

6. Определим количество ступеней турбины. Для этого примем:

для регулирующей ступени скорости – $H_0^{\text{per}} = 200 \frac{\kappa \Delta \pi}{\kappa r}$; для активных (остальных) ступеней - $H_0^a = 60 \frac{\kappa \Delta \pi}{\kappa r}$. $z = \frac{1445 - 200}{60} \approx 21$. Общее число ступеней Z =

21+1= 22 шт.

7. Температура питательной воды $t_{\text{тв}} = 216$ °C (задана). Температуру конденсации определяем ПО давлению Температура конденсации. (конденсации), насыщения соответствующая давлению конденсации $p_{\kappa} = 3,5 \ \kappa \Pi a \ (0,035)$ бар) равна $t_{\kappa} = 20$ °С. Она получена ИЗ таблицы 2 "Термодинамические свойства воды И перегретого пара" (приложение 2) или по hs диаграмме.

Необходимо распределить на шесть подогревателе температурный перепад в количестве 216 - 20 = 196 °С.

При этом в подогревателях высокого давления подогрев воды необходимо реализовывать на 30...35 °C, а в трех подогревателях низкого давления и в деаэраторе на 20...30 °C. В каждом случае необходимо учитывать недогрев на 4 °C.

Для организации данной схемы в подогревателе верхнем, высокого давления, реализован нагрев воды на 35 °C.

Таблица 2. Термодинамические свойства воды и перегретого пара

	.d	= 0,016ap		=d	= 0,02 6ap		=d	= 0,03 6ap		=d	: 0,04 6ap	
t	а	ų	s	а	ų	s	v	ų	S	а	ų	s
ç	м ³ /кт	кДж/кг	к,Дж/(кт ∙К)	M ³ /KT	кДж/кг	к,Дж∪(кт ∙К)	м ³ /хг	ĸДж/кг	кДж/(кг ∙К)	m³/srr	кДж/кг	к,Дж/(кт ∙К)
•	0,00102	0'0	-0,001	0,001	0,0	-0,0010	0,001	0'0	-0,0001	0,0010	0,0	-0,0001
10	130,60	2519,5	8,995	0.0010002	42,0	0,1510	0,0010002	42,0	0,1510	0,0010002	42,0	0,1510
20	135,23	2538,1	9,060	67,58	2537,8	8,7396	0,0010017	83,9	0,2963	0,0010017	83,9	0,2963
4	144,47	2,575,5	9,1837	72,21	2575,3	8,8632	48,13	2575,0	8,6755	36,08	2574,8	8,5421
8	162,95	2650,6	9,4093	81,46	2650,4	9,0891	54,30	2650,3	8,9016	40,72	2650,2	8,7685
120	181,42	2726,2	9,6122	90,70	2726,1	9,2921	60,46	2726,0	9,1048	45,34	2726,0	8,9718
160	199,89	2802,6	9,7971	99,94	2802,5	9,4771	66,62	2802,4	9,2898	49,96	2802,4	9,1570
200	218,3	2879,7	9,9674	109,17	2879,7	9,6475	72,78	2879,6	9,4603	54,58	2879,6	9,3274
240	236,8	2957,7	10,1257	118,40	2957,7	9,8058	78,93	2957,7	9,6186	59,20	2957,6	9,4858
280	255,3	3036,7	10,2739	127,64	3036,7	9,9539	85,09	3036,6	9,7668	63,81	3036,6	9,6340
320	273,7	3116,6	10,4134	136,87	3116,6	10,0934	91,24	3116,6	9,9063	68,43	3116,6	9,7735
360	292,2	3197,5	10,5454	146,10	3197,5	10,2255	97,40	3197,5	10,0383	73,05	3197,5	9,9055
400	310,7	3279,5	10,6709	155,33	3279,5	10,351	103,55	3279,5	10,164	77,66	3279,5	10,001
440	329,1	3362,4	10,790	164,56	3362,4	10,470	109,70	3362,4	10,283	82,28	3362,4	10,150
480	347,6	3446,5	10,905	173,8	3446,5	10,585	115,86	3446,5	10,398	86,89	3446,5	10,265
520	366,0	3531,7	11,015	183,0	3531,7	10,695	122,01	3531,6	10,508	91,51	3531,6	10,375
560	384,50	3618,0	11,121	192,2	3617,9	10,802	128,17	3617,9	10,614	96,12	3617,9	10,482
600	402,96	3705,3	11,224	201,5	3705,3	10,904	134,32	3705,3	10,717	100,74	3705,3	10,584

T.e. 216-35 = 181 °C.

30 °С на деаэратор и так далее до 20 °С (146-30 = 116 °С, 116-30 = 86 °С, 86-30 = 56 °С) (рис.3).

Рис. 3. Схема регенерации с указанием параметров отборов (численные значения для примера)

Для того, чтобы обеспечить 216 °C, температура в отборе должна быть 220 °C. При этом давление в отборе должно находится на уровне 2,5 МПа или 25 бар (соответствует температуре насыщения 220 °C) (из табл. 3).

Таблица 3. Термодинамические свойства воды и перегретого пара

$\mathbf{p} = 15 \text{Gap}$ $\mathbf{p} = 20 \text{Gap}$ $\mathbf{p} = 25 \text{Gap}$ $\mathbf{p} = 30 \text{Gap}$ \mathbf{t} \mathbf{v} \mathbf{h} \mathbf{s} \mathbf{t} \mathbf{m} $$		_		_						_												_
$\mathbf{p} = 15 6ap$ $\mathbf{p} = 20 6ap$ $\mathbf{p} = 25 6ap$ $\mathbf{p} = 30 6ap$ \mathbf{t} \mathbf{v} \mathbf{h} \mathbf{s} \mathbf{h}		s	к,Дж/ (кт-К)	0,0001	0,5709	1,5250	2,2330	2,4228	2,5166	2,6098	6,2245	6,4477	6,6262	6,7818	6,9231	7,0535	7,1758	7,2345	7,2633	7,2918	7,4024	7,5084
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	= 30 6ap	ų	ĸДж/кг	3,0	170,1	505,7	808,3	898,1	943,9	990,3	2823,0	2941,8	3044,0	3139,3	3231,6	3321,9	3411,6	3456,4	3478,8	3501,2	3591,1	3681.5
\mathbf{r} $\mathbf{p} = 15 \ 6ap$ $\mathbf{p} = 20 \ 6ap$ $\mathbf{p} = 25 \ 6ap$ \mathbf{t} \mathbf{v} h \mathbf{s} \mathbf{v} h \mathbf{s} \mathbf{v} h \mathbf{s} \mathbf{r} \mathbf{v} h \mathbf{s} \mathbf{v} h \mathbf{s} \mathbf{v} h \mathbf{s} $^{\circ}$ C $\mathbf{x}^{\circ}/\mathbf{x}$ $\mathbf{x}^{\circ}/\mathbf{x}^{\circ}/\mathbf{x}$ $\mathbf{x}^{\circ}/\mathbf{x}^{\circ}/\mathbf$	đ	а	x³/sr	0,0009987	0,0010065	0,0010590	0,0011399	0,0011714	0,0011891	0,0012084	0,06818	0,07714	0,08500	0,09232	0,09933	0,1061	0,1128	0,1161	0,1178	0,1194	0,1259	0,1324
$p = 15 6ap$ $p = 20 6ap$ $p = 25 6ap$ t v h s v h s p $25 6ap$ t v h s v h s v h s °C m^3/m m^2/m		s	қДж/ (кт⁻К)	0,00004	0,5711	1,5255	2,2338	2,4237	2,5175	6,2927	6.3529	6,5573	6,7273	6,8781	7,0165	7,1449	7,2659	7,3240	7,3526	7,3808	7,4906	7,5960
$p = 15 6ap$ $p = 20 6ap$ p $p = 20 6ap$ p t v h s v h s v $^{\circ}$ v h s v h s v $^{\circ}$ w^{3}/wr w^{1}/wr w^{1}/wr w^{1}/wr w^{3}/wr w^{3}/wr $^{\circ}$ w^{3}/wr w^{1}/wr w^{1}/wr w^{1}/wr w^{3}/wr w^{3}/wr $^{\circ}$ w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr $^{\circ}$ w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr $^{\circ}$ w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr $^{\circ}$ 0.00010711 168.8 0.5715 0.0011071 $16w^{3}/wr$ $^{\circ}$ w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr w^{3}/wr $^{\circ}$ 0.00110710 16000 0.00110710 $16w^{3}/wr$ $16w^{3}/wr$	= 25 6ap	ų	кДж/кг	2,5	169,7	505,3	808,1	898,0	943,7	2820,4	2851,0	2959,8	3057,1	3149,6	3239,9	3328,9	3417,5	3461,9	3484,1	3506,4	3595,7	3685.5
$p = 15 6ap$ $p = 20 6ap$ t v h s v h s "C m^3/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr "C m^3/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr "C m^3/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr m^2/mr "O 0,00010071 168,8 0,5715 0,00100595 505,0 1,5260 0,5713 1200 0,0001071 168,8 0,5715 0,0011705 897,8 2,4245 2100 0,0001141 807,6 2,2345 0,10201 2889,2 6,6495 6,4416 2200 0,11465 2849,2 6,6150 0,10201 2897,8 2,4245 2,2345 2210 0,11418 807,6 2,32345 0,11705 897,8 2,4245 2,2345 2,4245 2,2345 2,4245	p	а	M^3/KT	0,0009990	0,0010067	0,0010593	0,0011403	0,0011719	0,0011897	0,08164	0,08439	0,09434	0,10334	0,1119	0,1201	0,1281	0,1360	0,1399	0,1419	0,1438	0,1516	0,1592
$p = 15 6ap$ $p = 20 6ap$ t v h s v h °C \mathbf{x}^3/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} °C \mathbf{x}^3/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} °C \mathbf{x}^3/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} \mathbf{x}_1/\mathbf{x} °C \mathbf{x}^3/\mathbf{x} \mathbf{x}^3/\mathbf{x} \mathbf{x}^3/\mathbf{x} \mathbf{x}^3/\mathbf{x} \mathbf{x}_1/\mathbf{x} °C		s	кДж/ (кг [.] К)	0,0000	0,5713	1,5260	2,2345	2,4245	6,3842	6,4416	6,4953	6,6842	6,8466	6,9929	7,1285	7,2550	7,3747	7,4323	7,4606	7,4886	TT92,T	7,7024
$p = 15 6ap$ p $p = 15 6ap$ p t v h s v °C m^3/krr $m_1/m^2/kr$ $m_1/m^2/kr$ m^3/kr °C m^3/kr $m_1/m^2/kr$ $m_1/m^2/kr$ m^3/kr °C m^3/kr $m_1/m^2/kr$ $m_1/m^2/kr$ m^3/kr °C m^3/kr $m_1/m^2/kr$ m^3/kr m^3/kr °C m^3/kr m^3/kr m^3/kr m^3/kr °C m^3/kr	= 20 6ap	ų	қДж/кг	2,0	169,2	505,0	807,9	897,8	2820,4	2849,0	2876,3	2976,9	3069,8	3159,5	3248,1	3335,8	3423,5	3467,4	3489,5	3511,5	3600,2	3689,5
$p = 15 6ap$ t v h s °C m^3/mr m_1/mr m_1/mr m_1/mr °C m^3/mr m_1/mr m_1/mr m_1/mr m_1/mr °C m_1/mr <th< td=""><td>ď</td><td>а</td><td>м³/кг</td><td>0,0009992</td><td>0,0010069</td><td>0,0010596</td><td>0,0011408</td><td>0,0011725</td><td>0,1021</td><td>0,1053</td><td>0,1084</td><td>0,1200</td><td>0,1308</td><td>0,1411</td><td>0,1512</td><td>0,1610</td><td>0,1708</td><td>0,1756</td><td>0,1780</td><td>0,1804</td><td>0,1900</td><td>0,1995</td></th<>	ď	а	м ³ /кг	0,0009992	0,0010069	0,0010596	0,0011408	0,0011725	0,1021	0,1053	0,1084	0,1200	0,1308	0,1411	0,1512	0,1610	0,1708	0,1756	0,1780	0,1804	0,1900	0,1995
$p = 15 6ap$ t v h °C xe^3/xrr xe_{Π}^2/xrr °C xe^3/xrr xe_{Π}^2/xrr °C xe^3/xrr $xe_{\Pi}^2/xr/xr$ 0 0,0010071 168,8 120 0,00110599 504,6 210 0,001141 807,6 2200 0,1445 2874,7 230 0,1445 2874,7 230 0,1445 2874,7 240 0,1445 2874,7 250 0,1445 2874,7 260 0,1627 2999,3 360 0,1627 2999,3 360 0,1627 2999,3 360 0,1627 2999,3 360 0,1627 3082,1 360 0,1627 3093,3 400 0.20387 3420,6 500 0.2387 3420,6 500 0.2383 3494,7 500 0.2381 3426,6 500<		s	кДж/ (кт [.] К)	0,0000	0,5715	1,5264	2,235	6,5099	6,5639	6,6150	6,6635	6,8394	6,9949	71372	7,2701	7,3949	7,5132	7,5703	7,5984	7,6262	7,7345	7,8386
t v °C xt ³ /xt °C 0.001009955 40 0,0010071141 210 0,1366 2200 0,1445 230 0,1465 320 0,1465 320 0,1465 320 0,1465 320 0,1465 320 0,1465 320 0,1465 320 0,1363 440 0,2159 480 0,2351 560 0,2383 560 0,2414 560 0,2541 600 0,2541	= 15 6ap	ų	ष्ट्र∏,क्र/हत	2را	168,8	504,6	807,6	2822,9	2849,2	2874,7	2899,3	2993,0	3082,1	3169,3	3256,1	3342,6	3429,3	3472,9	3494,7	3516,6	3604,6	3693,5
t °C	ď	а	м ³ /ыт	2666000,0	0,0010071	0,0010599	0,001141	0,1366	0,1406	0,1445	0,1483	0,1627	0,1765	0,1899	0.2030	0,2159	02287	0,2351	0,2383	0,2414	0,2541	0,2667
		t	°c	•	6	120	190	210	220	230	240	280	320	360	400	440	480	200	510	520	560	600

На *hs* - диаграмме (рис.4) отмечаем давления нерегулируемых отборов.

Рис. 4. Процесс расширения пара в турбине в *hs* диаграмме (второй этап)

Характеристики отборов и число ступеней с точки зрения распределения по теплоперепаду между отборами представим в таблице 4.

(Для первого отбора: 381-200 = 181 кДж/кг. 181/4 = 45,25 кДж/кг).

(За последним отбором 2240-2035 = 205 кДж/кг. 305/2 = 102,5 кДж/кг).

Изобразим схему проточной части турбины (рис. 5).

8.Предварительный расход пара на турбину

$$G_0 = m \frac{N_3}{H_0 \cdot \eta_{0i}} =$$

= 1,25 $\frac{50000}{1445 \cdot 0.85} = 50.89 \frac{\kappa r}{c}$

Расходы пара в отборах для данного примера приводим в табл. 5.

От- бор	P _i	h_i	$\Delta h_i = h_{i-1} - h_i$	Число ступеней между отборами	Теплоперепад на ступень
	бар/МПа	кДж/кг	кДж/кг	ШТ.	кДж/кг
1	2	3	4	5	6
				1 - скорости	200
Ι	25/2,5	3100	3480-3100=381	4	45,25
II	11/1,1	2900	3100-2900=200	4	50

Таблица 4. Характеристики отборов и число ступеней

Окончание табл. 4.

1	2	3	4	5	6
III	2/0,2	2575	2900-2575=470	7	67,14
IV	0,8/0,08	2430	2575-2430=145	2	72,5
V	0,2/0,02	2240	2430-2240=190	2	95
		Σ	1386	2 (за последним отбором)	102,5
			Σ	22	1591*

* с учетом числа ступеней

Рис. 5. Схема проточной части турбины с отборами

таолице	5. Гаскоды	nupu b o	roopun						
	Элемент	Доля	пара	Доля пара в	Pacyon Hana B orfonay				
Отбор	<i>R</i> -систе-	в груг	пе	отборе					
	мы	от е	ед.	от ед.	т/ч	кг/с			
Ι	ПВД	0.15		0,075	13,76	50,89.0,075=3,81			
II	ПВД+Д	0,15		0,075+0,0375	20,57	5,7			
III	ПНД		0.15	0,0375	6,84	1,9			
IV	ПНД		0,15	0,0375	6,84	1,9			
V	ПНД			0,0375	6,84	1,9			
	Σ	0,3		0,3					

Таблица 5 Расхолы цара в отборах

3. Предварительная оценка экономичности турбины

1. Коэффициент полезного действия двухвенечной регулирующей ступени:

$$\eta_{0i}^{\text{CT.CK}} = k_{\frac{u}{c}} \left(0.8 - \frac{2 \cdot 10^{-4}}{D} \sqrt{\frac{p_0}{v_0}} \right).$$
(7)

где $k_{\frac{u}{c}}$ – поправочный коэффициент (для первого приближения

считаем, $k_{\underline{u}} = 1$);

 $D=G_0$ – расход пара через ступень, кг/с;

*p*₀ – давление перед соплами, Па;

 v_0 – удельный объем перед соплами, м³/кг.

2. Коэффициент полезного действия отсека (турбины):

$$\eta_{oi}^{\text{отсек}} = \left(0,925 - \frac{0,5}{D_{\text{ср}} \cdot v_{\text{ср}}}\right) \left(1 + \frac{H_0^{\text{отсек}} - 600}{20000}\right) (1 - \xi_{\text{вс}}).$$
 (8)

где D_{cp} - средний расход пара через отсек (под отсеком понимают часть турбины или турбину в целом в зависимости от задачи, в данном случае – вся турбина без ступени скорости), кг/с:

$$D_{\rm cp} = \sqrt{D_1 \cdot D_2} \ . \tag{9}$$

Здесь и далее индекс «1» соответствует входной характеристике, а индекс «2» выходной.

 v_{cp} - средний удельный объем пара в отсеке, м³/кг:

$$v_{\rm cp} = \sqrt{v_1 \cdot v_2}.\tag{10}$$

Нотсек - располагаемый теплоперепад в отсеке, кДж/кг:

$$H^{\text{отсек}} = H_0 - H_0^{\text{ст.ск}}.$$
 (11)

 $\xi_{\rm BC}$ - потери с выходной скоростью:

$$\xi_{\rm BC} = \frac{1}{z} \sin^2 \alpha_1. \tag{12}$$

где *z* – число ступеней в отсеке;

*α*₁=10...40° – угол выхода пара из сопл последней ступени (в первом приближении – меньшие значения для меньшего количества ступеней).

3. Построить новый процесс расширения пара в турбине, где учитывают потерю в ступени скорости и потерю в остальной турбине и уточняют схему проточной части.

Если процесс расширения пара пересекает линию насыщения, то это означает, что часть процесса расширения идет в зоне перегретого пара, а часть в зоне влажного пара. Часть ступеней турбины, работающие в зоне влажного пара имеют ухудшенные характеристики, что обусловит более пологий угол наклона процесса расширения в этой части турбины. На схеме проточной части отмечают зону ступеней, работающих во влажном паре. При таком условном разделении турбины на отсеки необходимо учесть наличие нерегулируемого отбора, который может совпадать с началом процесса насыщения, а начало отсека может находиться как выше линии насыщения, так и ниже неё.

3.1. Для ступени скорости потеря в ступени, кДж/кг:

$$\Delta H^{\text{ст.ск}} = H_0^{\text{ст.ск}} - \eta_{oi}^{\text{ст.ск}} \cdot H_0^{\text{ст.ск}}.$$
(13)

3.2. Потеря для отсека турбины (в данном случае отсеком выступает вся остальная турбина) составит, кДж/кг:

$$\Delta H^{\text{отсека}} = H_0^{\text{отсека}} - \eta_{oi}^{\text{отсека}} \cdot H_0^{\text{отсека}}.$$
 (14)

Энтальпия пара на входе в отсек турбины (за ступенью скорости), кДж/кг:

$$h_2 = h_0 - H_0^{\text{CT.CK}} + \Delta H^{\text{CT.CK}}.$$
(15)

Энтропия пара на входе в отсек турбины $s^{\text{отсека}}$ (за ступенью скорости), кДж/кг·К - по *h*s - диаграмме.

Энтальпия пара на выходе из отсека турбины, при адиабатном процессе расширения, $h_{3\kappa}$, кДж/кг - по *h*s - диаграмме.

Энтальпия пара на выходе из отсека турбины, в реальном процессе расширения, $h_{4\kappa}$ (с учетом потерь), кДж/кг:

$$h_{4\kappa} = h_{3\kappa} + \Delta H^{\text{отсека}}.$$
 (16)

4. Уточнить внутренний относительный КПД отсека турбины, работающего в условиях перегретого и влажного пара.

4.1. Внутренний относительный КПД перегретого пара:

$$\eta_{oi}^{\Pi\Pi} = \left(0,925 - \frac{0.5}{D_{\rm cp} \cdot v_{\rm cp}}\right) \left(1 + \frac{H_0^{\Pi\Pi} - 600}{20000}\right) (1 - \xi_{\rm BC}). \tag{17}$$

где D_{cp} - средний расход пара через отсек, кг/с.

 v_{cp} - средний удельный объем пара в отсеке (v_1 и v_2 определяются по *hs* диаграмме), м³/с.

*H*₀^{пп} - располагаемый теплоперепад в отсеке, кДж/кг.

4.2. Внутренний относительный КПД отсека влажного пара:

$$\eta_{oi}^{\scriptscriptstyle B\Pi} = 0.87 \left(1 + \frac{H_0^{\scriptscriptstyle B\Pi} - 400}{10000} \right) (1 - \xi_{\scriptscriptstyle B.C.}) (1 - \xi_{\scriptscriptstyle B\Pi}).$$
(18)

где $H_0^{B\Pi}$ — располагаемый теплоперепад в отсеке (по *hs* диаграмме);

 $\xi_{\rm BC}$ – относительные потери с выходной скоростью;

 $\xi_{\text{вп}}$ – относительная потеря от влажности пара:

$$\xi_{\rm BII} = 0.8 \frac{x_1 + x_2}{2}.$$
 (19)

 x_1 и x_2 – степени влажности на входе и выходе (по *hs* диаграмме).

5. Построить реальный процесс расширения пара в *hs* диаграмме с учетом потерь в ступени скорости и в отсеках, работающих на перегретом и влажном паре.

При построении процесса расширения определяют при помощи *hs* диаграммы теплоперепады и другие термодинамические параметры в разных точках процесса.

5.1. Некоторые параметры для отсека, работающего на перегретом паре:

*H*₀^{пп}, кДж/кг – располагаемый теплоперепад отсека;

η_{oi}^{пп} – внутренний относительный КПД отсека;

 ΔH^{nn} , кДж/кг – потеря теплоты в отсеке:

$$\Delta H^{\Pi\Pi} = H_0^{\Pi\Pi} - \eta_{oi}^{\Pi\Pi} \cdot H_0^{\Pi\Pi} \,. \tag{20}$$

Н^{пп}_и, кДж/кг – использованный теплоперепад в отсеке:

$$H_{\mu}^{nn} = H_0^{nn} - \Delta H^{nn} \,. \tag{21}$$

 $h_0^{\Pi\Pi}$ - кДж/кг – энтальпия пара на выходе из отсека (входе во влажнопаровой отсек):

$$h_0^{\Pi\Pi} = h_0 - H_0^{\text{ct.ck}} + \Delta H^{\text{ct.ck}} - H_0^{\Pi\Pi} + \Delta H^{\Pi\Pi}.$$
 (22)

5.2. Некоторые параметры для отсека, работающего на влажном паре:

H^{вп}₀, кДж/кг – располагаемый теплоперепад отсека;

 $\eta_{oi}^{\text{вп}}$ – внутренний относительный КПД отсека;

$$\Delta H^{\text{вп}} = H_0^{\text{вп}} - \eta_{oi}^{\text{вп}} \cdot H_0^{\text{вп}}$$
, кДж/кг – потеря теплоты в отсеке:

$$\Delta H^{\mathrm{B\Pi}} = H_0^{\mathrm{B\Pi}} - \eta_{oi}^{\mathrm{B\Pi}} \cdot H_0^{\mathrm{B\Pi}}.$$
 (23)

 $h_0^{\text{вп}} = h_0^{\text{пп}}$, кДж/кг – энтальпия пара на входе во влажнопаровой отсек;

 $s^{\pi\pi} = f(p^{B\pi}, h_0^{B\pi})$, кДж/кг·К - энтропия на входе в отсек;

 $h_{\kappa}^{\text{отсек}}$, кДж/кг - энтальпия в конце адиабатного процесса расширения - при p_{κ} и s^{nn} ;

 $h_{\kappa}^{\text{отсек}}$, кДж/кг - энтальпия в конце реального процесса расширения:

$$h_{\kappa}^{\text{отсек}} = h_0^{\text{вп}} + \Delta H^{\text{вп}}.$$
 (24)

Н^{вп}_и, кДж/кг - использованный теплоперепад в отсеке:

$$H_{\mu}^{B\Pi} = H_0^{B\Pi} - \Delta H^{B\Pi}.$$
 (25)

- 6. Использованный теплоперепад турбины, кДж/кг: $H_{\mu}^{T} = H_{0} - (\Delta H^{cT} + \Delta H^{nn} + \Delta H^{Bn}).$ (26)
- 7. Внутренний относительный КПД турбины:

$$\eta_{oi}^{\rm T} = \frac{H_{\rm u}^{\rm T}}{H_0}.$$
(27)

8. Уточнённый расход пара на турбину, кг/с:

$$G_0 = m \frac{N}{H_0 \cdot \eta_{oi}^{\mathrm{T}}}.$$
(28)

Если значение G_0 отличается от предварительного (формула 6) более, чем на 3%, то следует уточнить расходы пара в нерегулируемых отборах.

Результаты расчетов для задачи выбора конструкции и оценки экономичности турбины, представленной в исходных данных, сводятся в таблицу.

Пример

1. Коэффициент полезного действия двухвенечной регулирующей ступени

$$\eta_{0i}^{\text{CT.CK}} = k_{\frac{u}{c}} \left(0.8 - \frac{2 \cdot 10^{-4}}{D} \sqrt{\frac{p_0}{v_0}} \right) = 1 \left(0.8 - \frac{2 \cdot 10^{-4}}{50.89} \sqrt{\frac{8.4 \cdot 10^6}{0.042}} \right) = 0.744.$$

2. Коэффициент полезного действия отсека (турбины) $\eta_{oi}^{otcek} = \left(0,925 - \frac{0,5}{D_{cp} \cdot v_{cp}}\right) \left(1 + \frac{H^{otcek} - 600}{20000}\right) (1 - \xi_{ac}) = \\
= \left(0,925 - \frac{0,5}{42,61 \cdot 1,21}\right) \left(1 + \frac{1245 - 600}{20000}\right) \cdot \\
\cdot (1 - 0,019) = 0,93 \\
D_{cp} = \sqrt{D_1 \cdot D_2} = \sqrt{50,89 \cdot 35,68} = 42,61 \frac{K\Gamma}{c}.$

 D_1 =50,89 кг/с - расход пара на входе в отсек; D_2 - расход пара на выходе из отсека

$$D_2 = 50,89 - 3,81 - 5,7 - 1,9 - 1,9 - 1,9 = 35,68 \text{ kr/c}.$$

 $v_{\text{cp}} = \sqrt{v_1 \cdot v_2} = \sqrt{0,042 \cdot 35} = 1,21 \frac{\text{M}^3}{\text{kr}}.$

 $v_1 = v_0 = 0,042 \left(\frac{M^3}{K\Gamma}\right)$ - удельный объем пара на входе в отсек. $v_2 = v_{\kappa} = 35 \left(\frac{M^3}{K\Gamma}\right)$ - удельный объем пара на выходе из отсека. Располагаемый теплоперепад в отсеке

 $H^{\text{отсек}} = H_0 - H_0^{\text{ст.ск}} = 1445 - 200 = 1245 \frac{\text{кДж}}{\text{кг}}.$

Потери с выходной скоростью

$$\xi_{\rm BC} = \frac{1}{z} \sin^2 \alpha_1 = \frac{1}{22} \sin^2 40 = 0,019.$$

3.1. Для ступени скорости.

Из точки начала процесса расширения (точка **0**) адиабатно откладываем принятый теплоперепад $H_0^{\text{ст.ск}} = 200 \frac{\kappa \beta \pi}{\kappa \Gamma}$ и получаем точку **1** с давлением *p*=46 бар.

Зная КПД ступени скорости $\eta_{0i}^{\text{ст.ск}} = 0,744$, можно найти потерю в ступени

$$\Delta H^{\text{ct.ck}} = H_0^{\text{ct.ck}} - \eta_{oi}^{\text{ct.ck}} \cdot H_0^{\text{ct.ck}} = 200 - 0,744 \cdot 200 = 51 \frac{\kappa \Delta \pi}{\kappa \Gamma}$$

Из точки I адиабатно вверх откладываем величину этой потери. Из полученной точки горизонтально (при h=const) движемся до пересечения с изобарой p=46 бар, проходящей через точку I.

Получаем точку 2. Процесс 0 - 2 – реальный процесс расширения в ступени скорости. Так же точка 2 является началом процесса расширения во всей турбине (рис.6, 7).

Рис.6. Построение точек 1 и 2.

Из точки 2 до давления конденсации p_{κ} строим новую линию адиабатного процесса. Получаем точку 3_{κ} (рис.7).

При этом линии постоянного давления в отборах сохраняются.

3.2. Для отсека турбины (вся остальная турбина).

$$h_2 = h_0 - H_0^{\text{ст.ск}} + \Delta H^{\text{ст.ск}} =$$
 $= 3480 - 200 + 51 = 3331 \frac{\kappa \Delta \pi}{\kappa \Gamma}$

Энтальпия пара на выходе из отсека турбины при адиабатном процессе расширения - $h_{3\kappa} = 2055 \frac{\kappa \#}{\kappa \Gamma}$ (получаем по *hs* диаграмме).

Энтропия пара на выходе из отсека турбины при адиабатном процессе расширения - $s_{3\kappa} = 6,88 \frac{\kappa \Delta m}{\kappa r \cdot K}$ (получаем по *hs* - диаграмме).

Рис. 7. Процесс расширения пара в турбине в *hs*-диаграмме (третий этап)

Получаем новый располагаемый теплоперепад $H_0^{\text{отсека}} = h_2 - h_{3\kappa} =$ = 3331 - 2055 = 1276 $\frac{\kappa \exists x}{\kappa r}$. Потеря для отсека турбины $\Delta H^{\text{отсека}} = H_0^{\text{отсека}} - -\eta_{oi}^{\text{отсека}} \cdot H_0^{\text{отсека}} =$ = 1276 - 0,93 · 1276 = = 89 $\frac{\kappa \exists x}{\kappa r}$.

Из точки Зк адиабатно вверх откладываем величину потери. полученной Из точки горизонтально (при h=const) пересечения с движемся ДО изобарой p_{κ} . Получаем точку 4κ , которая является новой точкой окончания процесса. Линия 2-4к характеризует процесс расширения в турбине с учетом потерь.

Энтальпия пара на выходе из отсека турбины в реальном процессе расширения $h_{4\kappa}$ (с учетом потерь)

$$h_{4\kappa} = h_{3\kappa} + \Delta H^{\text{отсека}} = 2055 + 89 = 2154 \frac{\kappa \#}{\kappa r}.$$

4. В нашем примере в зоне перегретого пара работают 2-11 ступени (рис.5), а с 12 по 22 работают в зоне влажного пара.

4.1 Для ступеней, работающих в зоне перегретого пара, уточняем заново КПД.

$$\eta_{oi}^{\Pi\Pi} = \left(0,925 - \frac{0.5}{D_{\rm cp} \cdot v_{\rm cp}}\right) \left(1 + \frac{H_0^{\Pi\Pi} - 600}{20000}\right) = \left(0,925 - \frac{0.5}{45,9 \cdot 0.22}\right) \left(1 + \frac{621 - 600}{20000}\right) (1 - 0,019) = 0,90.$$

$$D_{\rm cp} = \sqrt{D_1 \cdot D_2} = \sqrt{50,89 \cdot 41,38} = 45,9 \frac{\rm Kr}{\rm c}.$$

В области перегретого пара осуществляются два отбора пара, следовательно, *D*₂=50,89-3,81-5,7=41,38кг/с

$$v_{\rm cp} = \sqrt{v_1 \cdot v_2} = \sqrt{0.07 \cdot 0.7} = 0.22 \frac{{\rm M}^3}{{\rm c}}.$$

 $v_1 = 0,07 M^3 / \kappa 2 -$ удельный объем в точке 2.

 $v_2=0,7m^3/\kappa^2$ – удельный объем в точке пересечения линии процесса (**2-4** κ) с верхней пограничной кривой (*x*=*1*).

Располагаемый теплоперепад отсека

 $H_0^{\Pi\Pi} = h_2 - h_{\rm x} = 3331 - 2720 = 611 \frac{\kappa \pi}{\kappa \Gamma}$, или по *hs* - диаграмме.

 $h_{\rm x} = 2720 \frac{\kappa \#}{\kappa \Gamma}$ - энтальпия в точке пересечения линии процесса (2-4к) с верхней пограничной кривой (*x*=*l*).

Зная КПД отсека турбины $\eta_{oi}^{\text{отсек}} = 0,93$, можно найти потерю

$$\Delta H^{nn} = H_0^{nn} - \eta_{oi}^{nn} \cdot H_0^{nn} = 611 - 0,90 \cdot 611 = 61 \frac{\kappa \#}{\kappa \Gamma}.$$

Из точки пересечения линии процесса $(2-4\kappa)$ с верхней пограничной кривой (x=1) адиабатно вверх откладываем величину потери. Из полученной точки горизонтально (при *h=const*) движемся до пересечения с изобарой p_{en} . Получаем точку 5 (рис. 8). Линия 2-5 характеризует процесс расширения в области перегретого пара. Из точки 5 до давления конденсации строим новую линию адиабатного процесса 5-6 κ .

4.2. Внутренний относительный КПД отсека влажного пара.

$$\eta_{oi}^{\text{BII}} = 0,87 \left(1 + \frac{H_0^{\text{BII}} - 400}{10000} \right) (1 - \xi_{\text{BC}}) (1 - \xi_{\text{BII}}) = \\ = \left(1 + \frac{631 - 400}{10000} \right) (1 - 0,019) (1 - 0,07) = 0,933.$$

 $H_0^{\text{вп}} = h_5 - h_{6\kappa} = 2781 - 2150 = 631 \frac{\kappa \mu \pi}{\kappa r}$ — располагаемый теплоперепад в отсеке.

 $h_5 = h_x + \Delta H^{\Pi\Pi} = 2720 + 61 = 2781 \frac{\kappa \Delta \pi}{\kappa r}$ - энтальпия в точке 5. $h_6 = 2150 \frac{\kappa \Delta \pi}{\kappa r}$ - энтальпия в точке 6к (по *hs* диаграмме). $\xi_{\rm BC} = 0,019$ – относительные потери с выходной скоростью. $\xi_{\rm B\Pi}$ – относительная потеря от влажности пара.

Рис. 8. Процесс расширения пара в турбине в hs-диаграмме (четвертый этап)

$$\xi_{\rm BII} = 0.8 \frac{x_1 + x_2}{2} = 0.8 \frac{0 + 0.164}{2} = 0.07.$$

 x_1 и x_2 – степени влажности на входе и выходе (по *hs* диаграмме)

 $\Delta H^{\text{BII}} = H_0^{\text{BII}} - \eta_{oi}^{\text{BII}} \cdot H_0^{\text{BII}} = 631 - 0,933 \cdot 631 = 42.$

Из точки *6к* адиабатно вверх откладываем величину потери. Из полученной точки горизонтально (при h=const) движемся до пересечения с изобарой p_{κ} . Получаем точку **7**. Линия **5-7** характеризует процесс расширения в области влажного пара.

5. Реальный процесс расширения пара в *hs*-диаграмме с учетом потерь в ступени скорости и в отсеках, работающих на перегретом и влажном паре показан на рис. 8.

Пример изображения реального процесса расширения на *h*s диаграмме приведен в Приложении 5.

5.1. Некоторые параметры для отсека, работающего на перегретом паре:

 $H_0^{\Pi\Pi} = 611 \frac{\kappa \Delta \pi}{\kappa \Gamma}$ - располагаемый теплоперепад отсека;

 $\eta_{oi}^{nn} = 0,90$ – внутренний относительный КПД отсека;

 $\Delta H^{\Pi\Pi} = 61 \frac{\kappa \Delta \pi}{\kappa r}$ – потеря теплоты в отсеке;

 $H_{\mu}^{\Pi\Pi} = H_0^{\Pi\Pi} - \Delta H^{\Pi\Pi} = 611 - 61 = 550 \frac{\kappa Z \pi}{\kappa \Gamma}$, – использованный теплоперепад в отсеке;

 $h_0^{\Pi\Pi} = 2781 \frac{\kappa \pi}{\kappa r}$ – энтальпия пара на выходе из отсека (входе во влажнопаровой отсек, точка 5).

$$h_0^{\Pi\Pi} = h_0 - H_0^{\text{CT.CK}} + \Delta H^{\text{CT.CK}} - H_0^{\Pi\Pi} + \Delta H^{\Pi\Pi} =$$

= 3480 - 200 + +51 - 611 + 61 = 2781 $\frac{\kappa \Xi \pi}{\kappa \Gamma}.$

5.2. Некоторые параметры для отсека, работающего на влажном паре:

 $H_0^{B\Pi} = 631 \frac{\kappa \mu \pi}{\kappa_{\Gamma}} -$ располагаемый теплоперепад отсека; $\eta_{oi}^{B\Pi} = 0.933 -$ внутренний относительный КПД отсека; $\Delta H^{B\Pi} = 42 \frac{\kappa \mu \pi}{\kappa_{\Gamma}} -$ потеря теплоты в отсеке; $s^{B\Pi} = 7.19 \frac{\kappa \mu \pi}{\kappa_{\Gamma} \cdot \kappa} -$ энтропия на входе в отсек при $p^{B\Pi} = 2.4$ бар и $h_0^{B\Pi} = 2781 \frac{\kappa \mu \pi}{\kappa_{\Gamma}}$; $h_{\kappa}^{otcek} = 2150 \frac{\kappa \mu \pi}{\kappa_{\Gamma}} -$ энтальпия в конце адиабатного процесса расширения (точка 6κ) при $p_{\kappa} = 0.0356ap$ и $s^{B\Pi} = 7.19 \frac{\kappa \mu \pi}{\kappa_{\Gamma} \cdot \kappa}$

(определено по *hs* диаграмме).

Энтальпия в конце реального процесса расширения *h*₇=2192 кДж/кг (точка 7),

$$h^{\text{вп}} = h_0^{\text{вп}} + \Delta H^{\text{вп}} = 2150 + 42 = 2192 \frac{\kappa \square \pi}{\kappa \Gamma}.$$

Использованный теплоперепад в отсеке

$$H_{\mu}^{B\Pi} = H_0^{B\Pi} - \Delta H^{B\Pi} = 631 - 42 = 589 \frac{\kappa \Delta \pi}{\kappa \Gamma}.$$

Энтальпия в конце реального процесса расширения *s*₇=7,33 кДж/кг·К (точка 7).

6. Использованный теплоперепад турбины, кДж/кг $H_{\mu}^{T} = H_{0} - (\Delta H^{CT.CK} + \Delta H^{\Pi\Pi} + \Delta H^{B\Pi}) = 1445 - (51 + 61 + +42) =$ $= 1291 \frac{\kappa \Lambda K}{\kappa \Gamma}.$

7. Внутренний относительный КПД турбины $\eta_{oi}^{\scriptscriptstyle \mathrm{T}} = \frac{H_{\scriptscriptstyle \mathrm{H}}^{\scriptscriptstyle \mathrm{T}}}{H_0} = \frac{1291}{1445} = 0,89.$

8. Уточнённый расход пара на турбину, кг/с

$$G_0 = m \frac{N}{H_0 \cdot \eta_{oi}^{\mathrm{T}}} = 1,25 \frac{50000}{1445 \cdot 0,89} = 48,60 \frac{\mathrm{kr}}{\mathrm{c}} < 50,89 \mathrm{ Ha} 4,5\%.$$

Так как значение отличается более, чем на 3%, пересчитаем расходы в отборах табл.6.

Отбор	Расход пара						
	От ед.	кг/с					
Ι	0,075	3,6					
II	0,1125	5,5					
III	0,0375	1,8					
IV	0,0375	1,8					
V	0,0375	1,8					

Таблица 6. Уточнение расхода пара в нерегулируемых отборах.

Результаты расчетов для задачи выбора конструкции и оценки экономичности турбины, представленной в исходных данных, сведены в табл. 7.

Наименование	Размерность	Значение
1	2	3
Давление пара на входе в ступень турбины, <i>р</i> 0	МΠа	8,4
Располагаемый теплоперепад на турбину, <i>H</i> ₀	кДж/кг	1445
Схема турбины	_	2 ПВД + Д + 3 ПНД
Характеристики отборов	_	См. табл.2
Число ступеней, <i>z</i>	ШТ	21
Предварительный расход пара G ₀	кг/с	50,89
Располагаемый теплоперепад на ступени скорости, $H_0^{\text{ст.ск}}$	кДж/кг	200
Коэффициент полезного действия двухвенечной регулирующей ступени, $\eta_{0i}^{\text{ст.ск}}$	_	0,744
Коэффициент полезного действия отсека (турбины), η_{oi}^{otceka}	_	0,93
Внутренний относительный КПД отсека влажного пара, $\eta_{oi}^{B\Pi}$	_	0,933
Располагаемый теплоперепад отсека на перегретом паре, $H_0^{\Pi\Pi}$	кДж/кг	611
Энтальпия пара на выходе из ступени скорости (входе в отсек турбины), <i>h</i> ₂	кДж/кг	3331
Располагаемый теплоперепад отсека на влажном паре, $H_0^{\text{вп}}$	кДж/кг	631
Энтальпия пара на входе во влажнопаровой отсек турбины, $h_0^{\text{вп}}$	кДж/кг	2781
Использованный теплоперепад турбины, H _и ^т	кДж/кг	1291

Таблица 7. Пример решения задачи выбора конструкции и предварительной оценки экономичности турбины

Окончание табл. 7

1	2	3
Внутренний относительный КПД турбины, η_{oi}^{T}	_	0,89
Уточненный расход пара на турбину, G_0	кг/с	48,60

4. Детальный расчет двухвенечной регулирующей ступени скорости

Исходные данные для расчета (из предыдущих расчетов):

*p*₀, бар/МПа – начальное давление (перед ступенью);

*p*₂, бар/МПа – конечное давление (за ступенью);

 h_0 , кДж/кг – энтальпия пара на входе;

*h*₂, кДж/кг – энтальпия пара на выходе;

*v*₀, м3/кг – удельный объем пара на входе;

*v*₂, м3/кг – удельный объем пара на выходе;

Δ*H*, кДж/кг – адиабатный теплоперепад на ступень;

D, кг/с – расход пара;

 n, c^{-1} – число оборотов ротора.

1. Задаются средним диаметром ступени и оптимальным соотношением u/c_{ϕ} .

Для регулирующих ступеней при цельнокованом роторе рекомендуется принимать $d_{cp}=1,1...1,2$ м. При этом для повышения КПД ступени следует принимать меньшие значения.

Для турбин с N < 25 МВт (в рамках данного проекта) допустимо принимать $d_{cp}=0,6...1,0$ м, меньшие значения для турбин меньшей мощности.

Для двухвенечных ступеней со степенью реактивности θ =0,02...0,12 рекомендуется принимать $\left(\frac{u}{c_{\phi}}\right)_{\text{опт}}$ =0,22...0,3. При этом, если парциальность *e*<1 (из-за подвода пара через сопловые коробки, а также потерь на вентиляцию и утечки), то следует принимать меньшие значения.

2. Окружная скорость, м/с:

$$u = \pi \cdot d_{\rm cp} \cdot n. \tag{29}$$

3. Фиктивная скорость, м/с:

$$c_{\phi} = \frac{u}{\left(\frac{u}{c_{\phi}}\right)_{\text{опт}}}.$$
(30)

4. Располагаемый теплоперепад ступени от параметров торможения, кДж/кг:

$$\bar{h}_0 = \frac{c_{\Phi}^2}{2}.$$
(31)

Из точки O адиабатно откладываем процесс O-2' протекающий в ступени скорости. Из полученной точки откладывая адиабатно вверх \bar{h}_0 получим параметры в заторможенном состоянии, току O'.

5. Задаться степенью реактивности с учетом того, что двухвененчные ступени выполняют как ступени скорости с малой степенью реактивности, а наибольший КПД ступени обеспечивается при суммарном $\theta = 0,13..0,16$, при этом степень реактивности первого и второго венца $\theta_1 = \theta'_1 = 0,03..0,04$, а направляющего аппарата $\theta_{II} = 0,08..0,1.$

Для расчетов принимают степень реактивности в первой рабочей (θ_l), поворотной (θ_n) и второй рабочей (θ'_l) решетках.

6. Располагаемый теплоперепад на соплах с учетом реактивности, кДж/кг:

$$h_{0c} = \bar{h}_0 (1 - \theta_1 - \theta_{\pi} - \theta_1').$$
(32)

7. Располагаемый теплоперепад на решетках, кДж/кг:

$$h_{0p} = \theta_1 \cdot \bar{h}_0. \tag{33}$$

$$h_{0\mathrm{H}} = \theta_{\mathrm{H}} \cdot \bar{h}_{0}. \tag{34}$$

$$h_{0p}' = \theta_1' \cdot \bar{h}_0. \tag{35}$$

8. Построить процесс расширения пара в ступени в *hs* - диаграмме.

Отложив полученные выше значения располагаемый теплоперепад на решетках от точки 2', получим четыре линии постоянного давления p_1 , p_2 , p'_1 , p'_2 . Давление p_1 характеризует окончание процесса в сопловом аппарате, $p_2 - в$ первой рабочей решетке, $p'_1 -$ направляющем аппарате и $p'_2 -$ окончание процесса во второй рабочей решетки.

Допускается строить процесс расширения качественно, не придерживаясь строгого наложения на диаграмму состояния воды и водяного пара. Для сохранения наглядности необходимо придерживаться какого-либо масштаба.

9. Определить параметры в точке I: давление p_1 , удельный объем v_{1t} .

10. Определение теоретической скорости на выходе из сопла при изоэнтропийном процессе c_{1t} (м/с), скорости звука a_1 (м/с) и числа Maxa M_{1t} :

$$c_{1t} = \sqrt{2 \cdot h_{0c}}.\tag{36}$$

$$a_1 = \sqrt{k \cdot p_1 \cdot v_{1t}}.\tag{37}$$

где: k – показатель адиабаты (принять n = 1,276).

$$M_{1t} = \frac{c_{1t}}{a_1}.$$
 (38)

Для настоящего проекта значение числа M_{1t} должно находиться в пределах 0,9<M<1,4 (что соответствует степени реакции в θ =0,13..0,16, принятой ранее). Это свидетельствует о течении в решетке с небольшим превышением скорости звука и означает, что профиль следует выбирать с околозвуковым течением, тип Б (всего промышленностью выпускаются профили следующих типов: А – дозвуковые; Ак – дозвуковые для малых высот лопаток; Б – околозвуковые; В – сверхзвуковые).

11. Определение режима истечения: следует сравнить с критическим отношение давлений отношение $\frac{p_1}{p_0}$, полученное в расчетах. Если $\frac{p_1}{p_0} > \left(\frac{p_1}{p_0}\right)_{\rm KP}$, то режим истечения критический.

Принять $\left(\frac{p_1}{p_0}\right)_{\rm kp} = 0,546$ – критическое отношение давлений для перегретого пара (0,577 – для влажного пара).

12. Выходная площадь сопловой решетки, м²: для перегретого пара:

$$F_1 = \frac{D}{0,667 \cdot \mu_1 \sqrt{\frac{p_0}{\nu_0}}}$$
(39)

для влажного пара:

$$F_1 = \frac{D}{0,635 \cdot \mu_1 \sqrt{\frac{p_0}{v_0}}}.$$
(40)

Коэффициент расхода (µ) допустимо принимать на уровне 0,97...0,99.

13. Выбор профиля.

На основании полученных в результате расчетов данных (тип профиля Б; число M и др.) по приложению 3 следует выбрать профиль так, чтобы расчетное число Маха наиболее близко подходило к справочным значениям, а тип решетки совпадал с требуемым. Определяют характеристики профиля: \overline{t} – относительный шаг; b_1 – хорда профиля.

Хорду профиля для ступеней ЧВД и ЧСД выбирают на уровне 30...60 мм – для сопловых лопаток и 20...40 мм – для рабочих.

14. Высота сопловой лопатки, мм, должна быть ≥12 мм (минимально допустимая высота лопаток):

$$l_1 = \frac{e \cdot l_1}{e_{\text{OHT}}}.$$
(41)

где: $e \cdot l_1$ - относительная высота лопатки, м:

$$e \cdot l_1 = \frac{F_1}{\pi \cdot d_{\rm cp} \cdot \sin\alpha_{13}}.$$
(42)

*е*опт - оптимальная степень парциальности:

$$e_{\rm off} = 3.3\sqrt{e \cdot l_1}.\tag{43}$$

15. Число каналов сопловой решетки, шт:

$$z_1 = \frac{\pi \cdot d_{\rm cp} \cdot e_{\rm ont}}{b_1 \cdot \bar{t}_1}.$$
(44)

16. Расчет на прочность лопаток. В настоящем проекте не проводят.

17. Потеря энергии в сопловой решетке составит, кДж/кг:

$$\Delta h_{\rm c} = \xi_{\rm c} \cdot h_{\rm 0c}.\tag{45}$$

Здесь коэффициент потерь для сопловых и рабочих решеток $\xi_c = 0.04 \dots 0.12$.

Строят реальный процесс расширения в *hs*-диаграмме для давления *p*₁=const, puc.11.

18. Поправка на отклонение в косом срезе сопловой решетки (в настоящем расчете определяется только для ступени со сверхзвуковым обтеканием, то есть ступени скорости).

Для определения угла выхода α₁ используется формула Бэра:

$$\sin\alpha_1 = \sin\alpha_{13} \frac{v_{1t}}{v_{\kappa}} \cdot \frac{c_{\kappa}}{c_{1t}}.$$
(46)

где: v_{1t} – удельный объем при адиабатном расширении, м³/кг; c_{1t} – скорость на выходе из сопел при адиабатном процессе, м/с; v_{κ} – критический объем (определяется при критическом давлении $p_{\kappa} = 0.546 \cdot p_0$, м³/кг;

 $c_{\rm K}$ – критическая скорость, м/с:

$$c_{\rm K} = 1,064\sqrt{p_0 \cdot v_0}.\tag{47}$$

Тогда расчетный угол выхода с учетом поправки в косом срезе $\alpha_1 = sin\alpha_{13} \frac{v_{1t}}{v_{\kappa}} \cdot \frac{c_{\kappa}}{c_{1t}}$ и с учетом диапазона данных атласа профилей следует окончательно принять угол выхода α_l .

19. Действительная скорость выхода из сопл, м/с:

$$_{1}=\varphi \cdot c_{1t}. \tag{48}$$

где коэффициент скорости:

$$\varphi = \sqrt{1 - \xi_c}.\tag{49}$$

20. Строят треугольник скоростей на выходе из сопловой решетки, откуда определяют скорость и угол входа в первую рабочую решетку, рис.12. Треугольник скоростей строят в масштабе при этом учитывают окружную скорость u, м/с (п.4, часть 2). Из треугольника определяют w_1 , м/с и угол ее направления β_1 , °.

21. Расчет первой рабочей решетки. Теоретическая скорость на выходе из решетки, м/с:

$$w_{2t} = \sqrt{2 \cdot \theta_1 \cdot \bar{h}_0 + w_1^2}.$$
 (50)

22. Строят процесс адиабатного расширения (при *s*=const $\kappa \not\square k/k r \cdot K$) в *hs* - диаграмме от окончания процесса расширения в соплах (точка 3) до давления p_2 , МПа (на выходе из первой рабочей решетки, входе в направляющую решетку, точка 3_t).

Затем по числу Маха определяют характер течения (дозвуковое/сверхзвуковое):

$$M_{2t} = \frac{W_{2t}}{a_{\rm p}}.\tag{51}$$

Здесь скорость звука определяют в точке выхода из рабочей решетки с давлением p_2 при адиабатном расширении, точка 3_t .

23. Выходная площадь рабочей решетки, м^{2:}

$$F_2 = \frac{D \cdot v_{3t}}{\mu_2 \cdot w_{2t}}.$$
 (52)

где:µ₂ – коэффициент расхода (принимают аналогично п.12, часть 4);

*v*_{3*r}-- удельный объем пара за решеткой при адиабатном процессе расширения, м³/кг (по <i>hs*-диаграмме).</sub>

24. Высота лопаток первой рабочей решетки определяется с учетом перекрыши, мм:

$$l_2 = l_1 + \Delta. \tag{53}$$

где Δ – величина перекрыши (рекомендуют принимать в диапазоне 1...6 мм, большие значения для больших высот лопаток).

25. Угол выхода из первой рабочей решетки определяют по выражению:

$$\sin\beta_{2\mathfrak{I}} = \frac{F_2}{\pi \cdot d_{\rm cp} \cdot e \cdot d_2}.$$
(54)

где *е*=*е*_{опт} – степень парциальности (п. 4, часть 14).

Здесь и далее поправку на косой срез не делают для упрощения расчетов.

26. По расчетным углу выхода и числу Маха осуществляют выбор профиля первой рабочей лопатки ступени скорости при помощи атласов профилей. После выбора профиля определяют \overline{t} – относительный шаг; b_1 – хорду профиля; β_1 – расчетный угол входа потока; β_{2_3} – эффективный угол выхода потока.

27. Коэффициент потерь энергии на первой рабочей решетке ξ_p определяют по аналогии с п.17, часть 4.

28. Потеря энергии составит, кДж/кг:

$$\Delta h_p = 10^{-3} \frac{w_{2t}^2}{2} \xi_p. \tag{55}$$

Строят процесс в *hs*-диаграмме. Для этого необходимо к точке окончания изоэнтропийного процесса расширения в первой рабочей решетке прибавить величину потери энергии Δh_p и отложить на изобаре p_2 новое значение энтальпии. Полученная точка **4** будет характеризовать окончание реального процесса расширения пара в первой рабочей решетке.

29. Строят треугольники скоростей, откуда определяют скорость выхода из рабочей решетки первого ряда c_2 , м/с и угол ее выхода α_2 (угол входа в поворотный аппарат).

30. Число лопаток первой рабочей решетки, шт:

$$z_2 = \frac{\pi \cdot d_{\rm cp} \cdot e}{b_2 \cdot \bar{t}_2}.$$
(56)

где: е.=.1 – степень парциальности.

Обратить внимание, что при определении аэродинамических характеристик потока степень парциальности для всей первой ступени <1. Это связано с тем, что при парциальном вводе пара через две-четыре сопловые коробки неравномерность потока сохраняется на протяжении всей ступени и постепенно снижается к выходу из нее.

В то же время все решетки, кроме первой сопловой, должны иметь полное заполнение лопатками, что обусловливает значение степени парциальности *e*.=.1 при определении конструктивных характеристик.

31. Расчет промежуточной решетки. Теоретическая скорость выхода пара из промежуточной решетки, м/с:

$$c_{1t}' = \sqrt{2 \cdot \theta_{\pi} \cdot \bar{h}_0 + c_2^2}.$$
⁽⁵⁷⁾

32. Строят процесс адиабатного расширения в hs - диаграмме от окончания процесса расширения в направляющей решетке до давления p'_1 , МПа (на выходе из направляющей решетки, входе во вторую рабочую решетку) при *s*=const.

Определяют характер течения по числу Маха на выходе из направляющей решетки (дозвуковое/сверхзвуковое):

$$M_{1t}' = \frac{c_{1t}'}{a_{1t}'}.$$
(58)

где: a'_{1t} - скорость звука определяют при p'_1 , в конце адиабатного процесса расширения в направляющей решетке.

33. Выходная площадь направляющей решетки, м²:

$$F_1' = \frac{D \cdot v_{1t}'}{\mu_1' \cdot c_{1t}'}.$$
(59)

где: μ'_1 - коэффициент расхода (принято аналогично п.12, часть 4); v'_{1t} , м³/кг – удельный объем пара за решеткой при адиабатном процессе расширения (по *hs*-диаграмме).

34. Высота лопатки направляющей решетки с учетом перекрыши Δ , мм:

$$l_3 = l_2 + \Delta. \tag{60}$$

35. Эффективный угол выхода из направляющей решетки:

$$\sin\alpha'_{1t} = \frac{F'_1}{\pi \cdot d_{\rm cp} \cdot e \cdot l_3}.$$
(61)

откуда находят α'_{1t} .

36. По расчетным эффективному углу выхода и числу Маха осуществляют выбор профиля лопатки направляющей ступени при помощи атласов профилей. Выбор профиля направляющей лопатки осуществляют среди профилей рабочих лопаток (тип Р). По профилю определяют \overline{t} – относительный шаг; $b_{\rm n}$ – хорду профиля; M – число Маха.

37. Число лопаток направляющей решетки, шт:

$$z_3 = \frac{\pi \cdot d_{\rm cp} \cdot e}{b_3 \cdot \bar{t}_2}.$$
(62)

38. Действительная скорость выхода из направляющей решетки, м/с:

$$c_1' = \varphi \cdot c_{1t}'. \tag{63}$$

Коэффициент скорости:

$$\varphi = \sqrt{1 - \xi_c}.\tag{64}$$

39. Продолжают строить треугольники скоростей, рис.16, откуда определяют скорость входа во вторую рабочую решетку w'_1 , м/с и угол ее выхода из поворотной решетки β'_1 .

40. Потеря энергии в поворотной решетке, кДж/кг:

$$\Delta h_{\rm H} = \frac{c_1'^2}{2} \xi_p. \tag{65}$$

Строят процесс в *hs*-диаграмме, рис.13. Для этого необходимо к точке окончания адиабатного процесса расширения в направляющей решетке прибавить величину потери энергии $\Delta h_{\rm H}$ и отложить на изобаре p'_1 новое значение энтальпии. Полученная

точка 5 (рис. 15) будет характеризовать окончание реального процесса расширения пара в направляющей решетке.

41. Расчет второй рабочей решетки. Теоретическая скорость выхода пара из второй рабочей решетки, м/с:

$$w_{2t}^{i} = \sqrt{2 \cdot \theta_1 \cdot \bar{h}_0 + (w_{1t}')^2}.$$
(66)

42. Строят процесс адиабатного расширения при s=constв hs - диаграмме от окончания процесса расширения в направляющей решетке до давления p'_2 МПа (на выходе из второй рабочей решетки, входе в следующую ступень, как правило, активного типа).

Определяют характер течения по числу Маха на выходе из второй рабочей решетки (дозвуковое/сверхзвуковое):

$$M_{2t} = \frac{w'_{2t}}{a'_{2t}}.$$
(67)

Здесь скорость звука определяют при p'_2 в конце адиабатного процесса расширения во второй рабочей решетке.

43. Выходная площадь второй рабочей решетки, м²:

$$F_2' = \frac{D \cdot v_{2t}'}{\mu_2' \cdot w_{2t}'}.$$
 (68)

где: μ'_2 – коэффициент расхода (аналогично п.12, часть 4);

 v'_{2t} , м³/кг – удельный объем пара за решеткой при адиабатном процессе расширения (по *hs*-диаграмме).

44. Высота рабочих лопаток второй рабочей решетки с учетом перекрыши Δ, мм:

$$l_2' = l_3 + \Delta. \tag{69}$$

45. Угол выхода из второй рабочей решетки эффективный:

$$\sin\beta_{29}' = \frac{F_2}{\pi \cdot d_{\rm cp} \cdot e \cdot l_2'}.$$
⁽⁷⁰⁾

откуда определяют β'_{29} .

46. По расчетным эффективному углу выхода и числу Маха осуществляют выбор профиля второй рабочей лопатки ступени скорости при помощи атласов профилей. С учетом атласа определяют \overline{t} – относительный шаг; $b_{\rm n}$, мм – хорду профиля; M – число Маха.

47. Число лопаток второй рабочей решетки, шт:

$$z_2' = \frac{\pi \cdot d_{\rm cp} \cdot e}{b_2 \cdot \bar{t}_2'}.\tag{71}$$

48. Потери энергии во второй рабочей решетке кДж/кг:

$$\Delta h'_p = \frac{(w'_{2t})^2}{2} \xi_p. \tag{72}$$

Строят процесс в hs - диаграмме. Для этого необходимо к точке окончания адиабатного процесса расширения во второй рабочей решетке прибавить величину потери энергии $\Delta h'_p$ и отложить на изобаре p'_2 новое значение энтальпии. Полученная точка будет характеризовать окончание реального процесса расширения пара во второй рабочей решетке.

49. Продолжают строить треугольники скоростей, рис.14, откуда определяют скорость c'_2 , м/с и угол α'_2 выхода из второй рабочей решетки.

50. Потеря с выходной скоростью, кДж/кг:

$$\Delta h_{\rm BC} = \frac{(c_2')^2}{2}.$$
(73)

51. Потери на трение и от парциального подвода пара, кДж/кг: $\Delta h_{\text{тр}+\text{парц}} = h_{0c} (\xi_{\text{тр}} + \xi_{\text{парц}}).$ (74)

где: $\xi_{\text{тр}}$ - относительная потеря на трение:

$$\xi_{\rm TP} = k_{\rm TP} \frac{d_{\rm CP}^2}{F_1} \cdot \left(\frac{u}{c_{\rm \varphi}}\right)^3.$$
⁽⁷⁵⁾

В этом выражении коэффициент потерь $k_{\rm rp}$ определяется характером обтекания паровым потоком профиля лопаток и в общем случае является функцией числа Re. Для настоящего расчета допустимо принять $k_{\rm rp}$ =0,0005, что учитывает много

меньшее значение потерь в рабочей решетке второго венца по сравнению с соплами первого венца ступени скорости.

Относительная потеря от парциального подвода пара зависит от числа сегментов (сопловых коробок), наличия (отсутствия) кожуха уменьшения вентиляционных потерь, конструктивного исполнения, зазоров и их размеров и других характеристик и, в общем случае может быть принята $\xi_{\text{парц}}=0,03...0,07$. Меньшие значения для турбин большей мощности.

Следует отметить, что применение четырех сегментов при, например, 24 лопатках на ступень (число лопаток определяют в п.15, часть 4) означает конструктивное исполнение каждого сегмента с 6-ю лопатками, применение двух сегментов – по 12 лопаток.

52. Потери с выходной скоростью и потери на трение и от парциального подвода пара откладываются на *hs*-диаграмме.

53. Расчетный внутренний относительный КПД ступени:

$$\eta_{0i} = \frac{\bar{h}_i}{\bar{h}_0}.$$
(76)

где: \bar{h}_i , кДж/кг – использованный теплоперепад ступени от параметров торможения, определенный при помощи hs - диаграммы.

54. Внутренняя мощность ступени, кВт:

$$P = D \cdot \overline{h_i}.$$
(77)

55. Результаты расчета сводят в таблицу.

56. Выполняют эскиз ступени скорости. При выполнении эскиза обратить внимание на обеспечение расчетных углов входа и выхода под каждый профиль и установочных углов в соответствии с данными атласов профилей. Пример выполнения эскиза проточной части двухвенечной ступени скорости приведен в Приложении 7.

Пример

Исходные данные для расчета (из предыдущих расчетов):

 $p_0=84/8,4$ бар/МПа – начальное давление (перед ступенью); $p_2=46/4,6$ бар/МПа – конечное давление (за ступенью); $h_0=3480$ кДж/кг – энтальпия пара на входе; $h_2=3331$ кДж/кг – энтальпия пара на выходе; $v_0=0,042$ м³/кг – удельный объем пара на входе; $v_2=0,07$ мЗ/кг – удельный объем пара на выходе; $\Delta H=200$ кДж/кг – адиабатный теплоперепад на ступень; D=48,6 кг/с – расход пара; n=50 с⁻¹ – число оборотов ротора.

- 1. Принимаем $d_{cp}=1,1.$ Принимаем $\left(\frac{u}{c_{\phi}}\right)_{ont}=0,22.$
- 2. Окружная скорость

$$u = \pi \cdot d_{\rm cp} \cdot n = 3,14 \cdot 1,1 \cdot 50 = 173 \frac{M}{c}.$$

3. Фиктивная скорость

$$c_{\phi} = \frac{u}{\left(\frac{u}{c_{\phi}}\right)_{OIIT}} = \frac{173}{0,22} = 786 \frac{M}{c}.$$

4. Располагаемый теплоперепад ступени от параметров торможения

$$\bar{h}_0 = \frac{c_{\phi}^2}{2} = \frac{786^2}{2} = 308898 \frac{\Lambda}{\kappa} = 309 \frac{\kappa}{\kappa}.$$

 $p_2' = 4.6 M \Pi a.$

Из точки **О** адиабатно вниз (при s=6,81 кДж/кг·К) строим процесс **О-2'** ($H_0^{\text{ст.ск}} = 200 \frac{\text{кДж}}{\text{кг}}$) протекающий в ступени скорости (рис. 9). Из полученной точки откладывая адиабатно вверх $\bar{h}_0 309 \frac{\text{кДж}}{\text{кг}}$ получим параметры в заторможенном состоянии, точку **О'**.

$$h_{0p}' = \theta_1' \cdot \bar{h}_0 = 0.03 \cdot 309 = 9 \frac{\kappa \Im \pi}{\kappa \Gamma}.$$

8. Построим процесс расширения пара в ступени и получим линии постоянного давления (рис.10).

*p*₁=5,3МПа, *p*₂=5,1МПа, *p* '₁=4,7МПа, *p* '₂=4,6МПа

9. Определяем параметры в точке **1**: давление $p_1=5,3$ МПа, удельный объем $v_{1t}=0,06 M^3/\kappa_2$.

Рис.10. Процесс расширения пара в двухвенечной ступени скорости (второй этап)

10. Теоретическая скорость на выходе из сопла $c_{1t} = \sqrt{2 \cdot h_{0c}} =$

$$c_{1t} = \sqrt{2 \cdot n_{0c}} =$$

$$= \sqrt{2 \cdot 266000} = 729 \frac{M}{c}.$$
Скорость звука
$$a_{1} = \sqrt{k \cdot p_{1} \cdot v_{1t}} =$$

$$= \sqrt{1,276 \cdot 5300000 \cdot 0,06}$$

$$= 637 \frac{M}{c}.$$
Число Маха
$$M_{1t} = \frac{c_{1t}}{a_{1}} = \frac{729}{637} = 1,14.$$

Это означает, что незначительно превышена скорость звука и для данного типа профиля сопловой решетки необходимо выбрать дозвуковой профиль типа Б.

11. Определение режима истечения

$$\frac{p_1}{p_0} = \frac{5,3}{8,4} = 0,63 > 0,546$$
$$\frac{p_1}{p_0} > \left(\frac{p_1}{p_0}\right)_{\rm Kp}$$

следовательно, режим истечения критический.

12. Выходная площадь сопловой решетки

$$F_1 = \frac{D}{0,667 \cdot \mu_1 \sqrt{\frac{p_0}{v_0}}} = \frac{48,6}{0,667 \cdot 0,97 \sqrt{\frac{8,4 \cdot 10^6}{0,042}}} = 0,0053 \text{ m}^2.$$

В расчетах принято 3% потерь на утечки и перетёк пара. Принимаем коэффициент расхода µ=0,97.

13. Выбор профиля.

Из табл.2 приложения 3 выбираем сопловую решетку С-9012Б (С – означает сопловая, 90^{0} – угол входа, 12^{0} - угол выхода эффективный (α_{13}).

Для данного профиля M=0,85...1,15 и наиболее близко совпадает с расчетным.

Характеристика профиля: $\bar{t} = 0,72 \dots 0,87$ – относительный шаг, $b_1 = 57$ мм – хорда профиля.

14. Высота сопловой лопатки.

Относительная высота лопатки

$$e \cdot l_1 = \frac{F_1}{\pi \cdot d_{\rm cp} \cdot \sin\alpha_{13}} = \frac{0,0053}{3,14 \cdot 1,1 \cdot \sin 12^0} = 0,008 \,\mathrm{m}.$$

Оптимальная степень парциальности

$$e_{\text{опт}} = 3, 3\sqrt{e \cdot l_1} = 0,295.$$

Высота сопловой лопатки

$$l_1 = \frac{e \cdot l_1}{e_{\text{опт}}} = \frac{0,008}{0,295} = 0,0271$$
 m = 27,1 mm.

15. Число каналов сопловой решетки

$$z_1 = \frac{\pi \cdot d_{\rm cp} \cdot e_{\rm ont}}{b_1 \cdot \bar{t}_1} = \frac{3,14 \cdot 1,1 \cdot 0,295}{0,057 \cdot 0,8} = 25,5 \approx 25 \text{ mt}.$$

16. Расчет на прочность лопаток. В настоящем проекте не проводят.

17. Потеря энергии в сопловой решетке.

В расчетах принят коэффициент потерь для сопловых и рабочих решеток $\xi_c = 0,083$.

$$\Delta h_{\rm c} = \xi_{\rm c} \cdot h_{\rm 0c} = 0,083 \cdot 266 = 22 \frac{\kappa \# \pi}{\kappa c}.$$

Построим реальный процесс расширения в *hs*-диаграмме для давления *p*₁=5,3МПа.

От точки **1** (рис. 11) откладываем вертикально вверх $\Delta h_c = 22 \frac{\kappa \Delta m}{\kappa r}$ и движемся горизонтально (при *h*=const) до пересечения с изобарой *p*₁=5,3МПа. Получаем реальную точку **3** окончания реального процесса в сопловой решетке. Именно с этой точке будет начинаться процесс в первой рабочей решетке.

Рис. 11. Процесс расширения пара в двухвенечной ступени скорости (третий этап)

	s	к,Дж/ (кг°К)	0,0002	0,1505	0,5702	1,0720"	1,5232	1,9373	2,3253	2,6985	2,7911	2,8842	6,0184	6,3147	6,4939	6,6486	6,7875	6,8528	7,0361	7,1501	7,2586
= 50 6ap	ų	хДж/кг	5,1	46,9	171,9	338,8	507,1	678,0	853,8	1037,8	1085,8	1135,0	2818,4	2986,2	3095,9	3196,9	3293,2	3340,4	3480,2	3572,8	3665,4
ď	а		7700000,0	0,0009979	0,0010056	0,0010268	0,0010579	0,0010990	0,0011530	0,0012264	0,0012494	0,0012750	0,04053	0,04811	0,05316	0,05780	0,06220	0,06434	0,07058	0,07464	0,07864
	s	к,Дж/ (кг [.] К)	0,0002	0,1506	0,5704	1,0723	1,5237	1,9379	2,3260	2,6996	2,7923	6,0370	6,1080	6,3836	6,5561	6,7071	6,8438	6,9083	7,0898	7,2029	7,3107
= 45 6ap	ų	R/Jac/RT	4,5	46,4	171,4	338,4	506,7	677,8	853,6	1037,8	1085,8	2807,1	2845,3	3001,5	3107,2	3205,8	3300,5	3347,1	3485,5	3577,4	3669,4
đ	а	м ³ /кг	0,0009980	0,0009981	0,0010058	0,0010270	0,0010582	0,0010993	0,0011534	0,0012272	0,0012503	0,04454	0,04641	0,05430	0,05971	0,06473	0,06953	0,07187	0,07872	0,08319	0,08760
	S	к,∐,ж/ (ыт-К)	0,0002	0,1506	0,5706	1,0726	1,5242	1,9385	2,3268	2,7007	2,7936	6,1355	6,1995	6,4573	6,6237	6,7713	6,9058	6,9694	7,1491	7,2614	7,3686
= 40 6ap	Ч	RUL/RU	4,0	45,9	171,0	338,1	506,4	677,5	853,4	1037,7	1085,8	2835,6	2870,1	3016,2	3118,2	3214,5	3307,7	3353,7	3490,8	3582,0	3673,4
đ	а	м ³ /ыт	0,0009982	0,0009984	0,0010060	0,0010273	0,0010584	0,0010997	0,0011540	0,0012280	0,0012512	0,5174	0,05366	0,06200	0,06787	0,07339	0,07869	0,08128	0,08890	0,09387	0,09879
	S	κ,∐,æ/ (arr·K)	0,0001	0,1507	0,5708	1,0730	1,5244	1,9390	2,3276	2,7018	6,1734	6,2369	6,2951	6,5374	6,6982	6,8426	6,9749	7,0378	7,2157	7,3272	7,4337
= 35 6ap	ų	स्,Д,ॠ/स्ट	3,5	45,4	170,5	337,7	506,0	677,2	853,2	1037,7	2828,1	2861,6	2892,9	3030,3	3128,9	3223,1	3314,8	3360,3	3496,0	3586,6	3677,5
đ	а	м ³ /вт	0,0009985	0,0009986	0,0010063	0,0010275	0,0010587	0,001100,0	0,0011545	0,0012288	0,05871	0,06085	0,06287	0,07187	0,07836	0,08451	0,09046	0,09338	0,10198	0,1076	0,1132
	1	°C	0	10	40	80	120	160	200	240	250	260	270	320	360	400	440	460	520	560	600

Таблица 8. Термодинамические свойства воды и перегретого пара

$$\sin\alpha_{1} = \sin\alpha_{13} \frac{v_{1t}}{v_{\kappa}} \cdot \frac{c_{\kappa}}{c_{1t}} = \sin 12^{0} \frac{0.06}{0.044} \cdot \frac{632}{729} = 0.245.$$

Тогда расчетный угол выхода с учетом поправки в косом срезе $\alpha_1 = arcsin0,245 = 14,2$ откуда (с учетом диапазона данных 10...14° атласа профилей для выбранного профиля, табл.2 приложения 3) следует принять $\alpha_1 = 14^\circ$.

19. Действительная скорость выхода из сопл, м/с

$$c_1 = \varphi \cdot c_{1t} = 0,958 \cdot 729 = 98 \frac{M}{c}$$

Коэффициент скорости

 $\varphi = \sqrt{1 - \xi_c} = \sqrt{1 - 0.083} = 0.958.$

20. Построим треугольник скоростей на выходе из сопловой решетки (рис.12).

Рис. 12. Треугольник скоростей (первый этап)

Треугольник скоростей строить с соблюдением произвольного масштаба на формате А4.

На горизонтальной линии выберем центр построения 0. Из этой точки под углом $\alpha_1=14^0$, в масштабе, откладываем величину скорости c_1 . Из полученной точки, параллельно линии построения, в том же масштабе откладываем величину окружной скорости u. Полученную точку соединяем с центром построения. Полеченный отрезок в масштабе соответствует относительной скорости w_1 . Угол, между w_1 и горизонтальной линией будет β_1 .

В данном примере $w_1 = 540$ м/с, а $\beta_1 = 17^{\circ}$.

21. Теоретическая скорость на выходе из первой рабочей решетки

$$w_{2t} = \sqrt{2 \cdot \theta_1 \cdot \bar{h}_0 + w_1^2} = \sqrt{2 \cdot 0.03 \cdot 309000 + 540^2} = 557 \frac{M}{c}.$$

 $(\bar{h}_0$ подставлять в Дж/кг).

22. Построим процесс адиабатного расширения в *hs* диаграмме в первой рабочей решетке (от окончания процесса расширения в соплах, точка 3 до давления $p_2=5,1$ *МПа*, точка 3_t) (рис.13).

Рис. 13. Процесс расширения пара в двухвенечной ступени скорости (четвертый этап)

Тогда
$$\beta_2 = \beta_{23} = 10, 3^0$$
.

 $M_{2t} = \frac{w_{2t}}{a_p} = \frac{557}{640} = 0,87.$ Скорость звука определяют в точке выхода из рабочей решетки, точка 3_t . $a_p = \sqrt{k \cdot p_2 \cdot v_{3t}} =$ $= \sqrt{1,276 \cdot 5100000 \cdot 0,063} =$ $= 640 \frac{M}{c}.$

Число Маха

Течение дозвуковое.

23. Выходная площадь рабочей решетки

$$F_2 = \frac{D \cdot v_{3t}}{\mu_2 \cdot w_{2t}} = \frac{48,6 \cdot 0,063}{0,97 \cdot 557} = 0,0057 \,\mathrm{m}^2.$$

24. Высота лопаток первой рабочей решетки $l_2 = l_1 + \Delta = 27, 1 + 2, 9 =$ = 30 мм. 25. Угол выхода из первой рабочей решетки $sin\beta_{23} = \frac{F_2}{\pi \cdot d_{cp} \cdot e \cdot l_2} =$ $= \frac{0,0056}{3,14 \cdot 1,1 \cdot 0,295 \cdot 0,03} =$ = 0.183. 26. По расчетному углу выхода и числу Маха выберем профиль первой рабочей лопатки (приложения 3).

Профиль Р2314А, $\bar{t} = 0.6 \dots 0.75$ – относительный шаг; $b_2=26$ мм – хорда профиля; $\beta_1=20\dots 30^{\circ}$ – расчетный угол входа потока; $\beta_{23}=12\dots 16^{\circ}$ – эффективный угол выхода потока.

27. Коэффициент потерь энергии на первой рабочей решетке $\xi_p = 0,083$.

28. Потеря энергии

$$\Delta h_p = \frac{w_{2t}^2}{2} \xi_p = \frac{557^2}{2} 0,083 == 12191 \frac{\text{Дж}}{\text{кr}} = 12,8 \frac{\text{к}\text{Дж}}{\text{кr}}.$$

Построим процесс в *hs* диаграмме. Для этого к точке окончания адиабатного процесса в первой рабочей решетке 3_t прибавить величину потери энергии $\Delta h_p \approx 13 \frac{\kappa \beta m}{\kappa r}$, далее движемся горизонтально (при *h*=const) до пересечения с изобарой *p*₁=5,1 МПа. Получаем точку **4** (рис.13) окончания реального процесса в первой рабочей решетке.

29. Построим треугольник скоростей (рис.14), откуда определим скорость выхода из рабочей решетки первого ряда $c_2=395$ м/с, м/с и угол ее выхода $\alpha_2=21^0$ (угол входа в поворотный аппарат).

Рис. 14. Треугольник скоростей (второй этап)

30. Число лопаток первой рабочей решетки $z_2 = \frac{\pi \cdot d_{\rm cp} \cdot e}{b_2 \cdot \bar{t}_2} = \frac{3.14 \cdot 1.1 \cdot 1}{0.026 \cdot 0.7} = 197 \text{шт.}$

31. Теоретическая скорость выхода пара из направляющей решетки

$$c_{1t}' = \sqrt{2 \cdot \theta_{\Pi} \cdot \bar{h}_0 + c_2^2} = \sqrt{2 \cdot 0.08 \cdot 309000 + 395^2} = 453 \frac{M}{c}.$$

32. Построим процесс адиабатного расширения в *hs*-диаграмме (рис.15) от окончания процесса расширения в направляющей решетке, точка **4** до давления $p'_1 = 4,7$ МПа, (на выходе из направляющей решетки, входе во вторую рабочую решетку) при *s*=const.

Определим характер течения по числу Маха на выходе из направляющей решетки.

$$M_{1t}' = \frac{c_{1t}'}{a_{1t}'} = \frac{453}{634} = 0,71.$$

Скорость звука определяют в точке выхода из направляющей решетки

$$a'_{1t} = \sqrt{k \cdot p'_1 \cdot v'_{1t}} = \sqrt{1,276 \cdot 4700000 \cdot 0,067} = 634.$$

Течение дозвуковое.

33. Выходная площадь направляющей решетки

$$F_1' = \frac{D \cdot v_{1t}'}{\mu_1' \cdot c_{1t}'} = \frac{48,06 \cdot 0,067}{0,97 \cdot 453} = 0,0073 \text{ m}^2.$$

34. Высота лопатки направляющей решетки с учетом перекрыши

$$l_3 = l_2 + \Delta = 30 + 3 = 33$$
 мм.

35. Эффективный угол выхода из направляющей решетки $sin\alpha'_{1t} = \frac{F'_1}{\pi \cdot d_{cp} \cdot e \cdot l_3} = \frac{0,0073}{3,14 \cdot 1,1 \cdot 0,295 \cdot 0,033} = 0,217.$ $\alpha'_{1t} = 12,6^0$

36. По расчетному углу выхода и числу Маха выберем профиль направляющей лопатки (приложения 3).

Профиль P-2314A, $\bar{t} = 0,6 \dots 0,75$ – относительный шаг; b_2 =26 мм – хорда профиля; α_1 =20...30 ⁰ – расчетный угол входа потока; α_{13} =12...16 ⁰ – эффективный угол выхода потока.

37. Число лопаток поворотной решетки

$$z_3 = \frac{\pi \cdot d_{\rm cp} \cdot e}{b_3 \cdot \bar{t}_2} = \frac{3.14 \cdot 1.1 \cdot 1}{0.025 \cdot 0.65} = 212 \text{шт.}$$

38. Действительная скорость выхода из направляющей решетки $c_1' = \varphi \cdot c_{1t}' = 0,917 \cdot 432 = 396 \frac{M}{c}.$ Коэффициент скорости $\varphi = \sqrt{1 - \xi_c} = \sqrt{1 - 0,083} = 0,917.$

39. Построим треугольник скоростей рис.15, откуда определим скорость выхода из направляющей решетки $w'_1 = 225 \frac{M}{c}$, м/с и угол ее выхода $\beta'_1 = 34^0$.

Рис.15. Треугольники скоростей для двухвенечной ступени скорости

40. Потеря энергии в направляющей решетке

$$\Delta h_{\rm H} = \frac{{c_1'}^2}{2} \xi_p = \frac{396^2}{2} 0,083 = 6508 \frac{\text{Дж}}{\text{кг}} = 6,5 \frac{\text{кДж}}{\text{кг}}$$

Построим процесс в *hs* диаграмме (рис. 16). Для этого к точке окончания адиабатного процесса в направляющей решетке прибавить величину потери энергии $\Delta h_{\rm H} \approx 7 \frac{\kappa \Delta \pi}{\kappa \Gamma}$, далее движемся горизонтально (при *h*=const) до пересечения с изобарой $p'_1 = p_1 = 4,7$ МПа. Получаем точку 5 окончания реального процесса в направляющей решетке.

41. Теоретическая скорость выхода пара из второй рабочей решетки

$$w_{2t}^{j} = \sqrt{2 \cdot \theta_1 \cdot \bar{h}_0 + (w_{1t}')^2} = \sqrt{2 \cdot 0.03 \cdot 309000 + 225^2} = 263 \frac{M}{c}.$$

42. Построим процесс адиабатного расширения при *s*=const в *hs* - диаграмме (рис.16) от окончания процесса расширения во второй рабочей решетке до давления $p'_2 = 4,6$ МПа.

Определим характер течения по числу Маха на выходе из второй рабочей решетки

$$M_{2t} = \frac{w_{2t}'}{a_{2t}'} = \frac{263}{637} = 0,41.$$

Скорость звука определяют в точке выхода из рабочей решетки

$$a'_{2t} = \sqrt{k \cdot p_2^{\dagger} \cdot v'_{2t}} = \sqrt{1,276 \cdot 4600000 \cdot 0,07} = 637 \frac{M}{c}.$$

Течение дозвуковое.

- 43. Выходная площадь второй рабочей решетки $F_2' = \frac{D \cdot v_{2t}'}{\mu_2' \cdot w_{2t}'} = \frac{48,6 \cdot 0,07}{0,97 \cdot 263} = 0,0133 \text{ м}^2.$
- 44. Высота рабочих лопаток второй рабочей решетки $l_2' = l_3 + \Delta = 33 + 3 = 36$ мм.

45. Угол выхода из второй рабочей решетки эффективный $sin\beta'_{2\ni} = \frac{F_2}{\pi \cdot d_{\rm cp} \cdot e \cdot l'_2} = \frac{0,0132}{3,14 \cdot 1,1 \cdot 0,295 \cdot 0,036} = 0,360.$ Тогда $\beta'_2 = \beta'_{2\ni} = 21,1^0.$

46. По расчетному углу выхода и числу Маха выберем профиль рабочей лопатки (приложения 3).

Профиль Р3025А, $\bar{t} = 0,58 \dots 0,68$ – относительный шаг; $b_2=25$ мм – хорда профиля; $\beta_I=25\dots40^{-0}$ – расчетный угол входа потока; $\beta_{2_3}=19\dots24^{-0}$ – эффективный угол выхода потока.

Рис.16. Процесс расширения пара в двухвенечной ступени скорости

47. Число лопаток второй рабочей решетки

$$z_2' = \frac{\pi \cdot d_{\rm cp} \cdot e}{b_2 \cdot \bar{t}_2'} = \frac{3.14 \cdot 1.1 \cdot 1}{0.025 \cdot 0.6} = 230\,\text{mt}.$$

48. Потеря энергии

$$\Delta h'_p = \frac{(w'_{2t})^2}{2} \xi_p = \frac{263^2}{2} 0,083 = 2871 \frac{\Lambda m}{\kappa \Gamma} = 2,8 \frac{\kappa \Lambda m}{\kappa \Gamma}.$$

Построим процесс в *hs* диаграмме (рис.16). Для этого к точке окончания адиабатного процесса во второй рабочей решетке прибавить величину потери энергии $\Delta h'_p \approx 3 \frac{\kappa \Delta \pi}{\kappa \Gamma}$, далее движемся горизонтально (при *h*=const) до пересечения с изобарой $p'_2 = 4,6$ МПа. Получаем точку **6** окончания реального процесса во второй рабочей решетке.

49. Продолжим строить треугольники скоростей, рис.16, откуда определяем скорость $c'_2 = 137 \frac{M}{c}$, м/с и угол $\alpha'_2 = 62^0$ выхода из второй рабочей решетки.

50. Потеря с выходной скоростью

$$\Delta h_{\rm BC} = \frac{(c_2')^2}{2} = \frac{137^2}{2} = 9385 \frac{\#}{\rm Kr} = 9.4 \frac{\rm K\#}{\rm Kr}.$$

51. Потери на трение и от парциального подвода пара $\Delta h_{\rm тр+парц} = h_{0c} (\xi_{\rm тр} + \xi_{\rm парц}) = 266(0,012 + 0,06) = 19 \frac{\kappa \mbox{Дж}}{\kappa \mbox{г}}.$ где: $\xi_{\rm тp}$ - относительная потеря на трение $\xi_{\rm тp} = k_{\rm тp} \frac{d_{\rm cp}^2}{F_1} \cdot \left(\frac{u}{c_{\rm b}}\right)^3 = 0,005 \frac{1,1}{0,0054} \cdot \left(\frac{173}{768}\right)^3 = 0,012.$

52. Отложим потери с выходной скоростью и потери на трение и от парциального подвода пара откладываются на *hs* диаграмме, рис.15 и получим точки 7 и 8.

Параметры точки 8: давление p_8 =4,6 Мпа, энтальпия h_8 =3355 кДж/кг, энтропия s_8 =6,91 кДж/кг·К, удельный объем v_8 =0,071 м³/кг.

53. Расчетный внутренний относительный КПД ступени

$$\eta_{0i} = \frac{\bar{h}_i}{\bar{h}_0} = \frac{244}{309} = 0,79.$$

54. Внутренняя мощность ступени
$$P = D \cdot \overline{h}_i = 48,06 \cdot 244 = 11727$$
кВт.

55. Результаты расчета сведем в таблицу 9.

			Решетка							
N⁰	Наименование	Размер ность	сопло- вая	1-я рабо- чая	пово- ротная	2-я рабочая				
1	2	3	4 5 6							
1	Расход пара, D	кг/с	53,3							
2	Средний диаметр, <i>d</i> _{ср}	М	1,1							
3	Окружная скорость, и	м/с]	173					
4	Начальное давление, p_0	МΠа	8,4							
5	Начальная температура, <i>t</i> ₀	°C	535							
6	Отношение скоростей, u/c_{ϕ}	_	0,22							
7	Располагаемый теплоперепад ступени, <i>H</i> ₀	кДж/кг	200							
8	Располагаемый теплоперепад ступени от параметров торможения, \overline{H}_0	кДж/кг								
9	Степень ракции, θ		_	0,03	0,08	0,03				
10	Располагаемый теплоперепад решетки, <i>h</i> ₀	кДж/кг	266	9	25	9				

Таблица 9. Пример расчета ступени скорости

Продолжение табл. 9

F - A				1						
1	2	3	4	5	6	7				
11	Теоретическая скорость выхода, c_{1t} , w_{2t}	м/с	729	542	403	261				
12	Давление за решеткой, <i>p</i> ₁ , <i>p</i> ₂	ΜПа	5,3	5,1	4,76	4,58				
13	Число Маха, М		1,14	0,84	0,63	0,4				
14	Коэффициент расхода, μ		0,97	0,99	0,99	0,99				
15	Выходная площадь, F	M ²	0,0057 5	0,0062 5	0,0098	0,0144				
16	Эффективный угол выхода, α1э, β2э	o	12	12	17	22,5				
17	Угол входа, α ₀ , β ₁	0	90	14	21	34				
18	Решетка	тип	С9012 Б	P2314 A	P2617A	P3525A				
19	Степень парциальности, <i>е</i>	От.ед.	0,295							
20	Высота лопатки, <i>l</i>	ММ	27	30	33	37				
21	Относительный шаг, $\frac{t}{t}$		0,8	0,7	0,65	0,6				
22	Хорда, b	MM	50	25	25	25				
23	Число лопаток, z	ШТ.	24	197	212	230				
24	Коэффициент потерь, ξ		0,084	0,06	0,08	0,06				
25	Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂	м/с	697	371	386	137				
26	Угол выхода, α_1 , β_2	0	10	12	16	22				
27	Потеря энергии в решетке, <i>Δh</i>	кДж/кг	22	8	6	2				
28	Потеря с выходной скоростью, $\Delta h_{\rm B,c}$	кДж/кг			9,4					

Окончание табл. 9

1	2	3	4
29	Относительные потери на трение, ξ _{тр}	От.ед.	0,012
30	Число сегментов (сопловых коробок)	шт.	4
31	Относительные потери от парциальности, $\xi_{\text{парц}}$	От.ед.	0,06
32	Использованный теплоперепад, <i>Н</i> и	кДж/кг	244
33	Внутренний относительный КПД ступени, η _{0i}	От.ед.	0,79
34	Внутренняя мощность, <i>Р</i>	кВт	13005

56. Пример выполнения эскиза проточной части двухвенечной ступени скорости приведен в Приложении 7.

5. Детальный расчет первой активной ступени

Исходные данные для расчета первой активной ступени (следующая за ступенью скорости или вторая ступень турбины):

Давление на входе в ступень p_0 , МПа.

Давление на выходе из ступени *p*₂, МПа.

Расход пара через ступень D, кг/с.

Энтальпия пара на входе в ступень h_0 , кДж/кг (из предварительного расчета, по *hs*-диаграмме).

Удельный объем пара на входе в ступень v_0 , $M^3/\kappa\Gamma$ (из предварительного расчета, по *hs*-диаграмме).

Адиабатный теплоперепад на ступень – ΔH , кДж/кг (из предварительного расчета, табл.2

Скорость пара на входе в ступень $c_0 = c'_2$, м/с (из расчета ступени скорости, рис.15).

Число оборотов n, c^{-1} .

1. Располагаемый теплоперепад на ступени от параметров торможения, кДж/кг:

$$\bar{H}_0 = \Delta H + \frac{c_0^2}{2} \cdot 10^{-3}.$$
(78)

2. Фиктивная скорость, м/с:

$$c_{\Phi} = \sqrt{2 \cdot \overline{H}_0 \cdot 10^3}.$$
⁽⁷⁹⁾

3. Степень реакции θ ступени принимают как для активной ступени (возможно принять θ=0,03-0,08).

4. Оптимальное отношение $\left(\frac{u}{c_{\phi}}\right)_{\text{опт}}$ для одновенечных ступеней активного типа рекомендуют принимать в следующем диапазоне – 0,42 ...0,55.

- 5. Окружная скорость, м/с: $u = c_{\phi} \left(\frac{u}{c_{\phi}}\right)_{\text{опт}}.$ (80)
- 6. Средний диаметр ступени, м: $d_{\rm cp} = \frac{u}{\pi \cdot n}.$ (81)
- 7. Располагаемый теплоперепад сопловой решетки, кДж/кг: $h_{0c} = (1 \theta) \overline{H}_0. \tag{82}$

8. Строят процесс расширения пара в первой нерегулируемой ступени в *hs*-диаграмме, рис.17, откуда определяют давление за сопловой решеткой p_1 , МПа; удельный объем за сопловой решеткой v_{1t} , м³/кг (при изотермическом расширении).

Процесс расширения пара строят по аналогии и по тем же принципам, что и для ступени скорости.

9. Теоретическая скорость выхода пара из сопловой решетки (м/с) и число Маха:

$$c_{1t} = \sqrt{2 \cdot h_{0c}}.\tag{83}$$

$$M_{1t} = \frac{c_{1t}}{a_{1t}}.$$
 (84)

где скорость звука a_{1t} определяют расчетным путем.

10. Выбор профиля для сопловой решетки.

Для первой активной ступени, как правило, характерно дозвуковое течение (M<1), что обусловливает профиль типа А. С учетом угла выхода потока из ступени скорости (α'_2 ,°, п.49, часть 3) и среднего диаметра ступени (обычно последний немногим менее $d_{\rm cp}$ ступени скорости, который соответствует ~1,1 ...1,2 м) при помощи атласа (приложение 3) выбирают профиль сопловой решетки.

Определяют характеристики профиля: \overline{t} – относительный шаг; α_1 – угол выхода потока.

11. Коэффициент потерь и степень парциальности.

Для первой нерегулируемой ступени с учетом п.17, части 4 принимают ξ_c ; степень парциальности e < 1 (может быть на уровне 0,7...0,9) и учитывает, что влияние регулирующей ступени еще высоко.

12. Потери в соплах, кДж/кг:

$$\Delta h = \xi_c \cdot h_{0c}.$$
(85)

13. Действительная скорость выхода из сопл, м/с:

 C_1

$$=\psi\cdot c_{1t}.\tag{86}$$

где коэффициент потерь:

$$\psi = \sqrt{1 - \xi_c}.\tag{87}$$

14. Строят треугольники скоростей (аналогично ступени скорости), рис.18, откуда определяют скорость на выходе из сопл w_1 и ее угол β_1 .

15. Площадь сечения сопловой решетки, м²:

$$F_1 = \frac{D \cdot v_{1t}}{\mu_1 \cdot c_{1t}}.\tag{88}$$

где:µ₁- коэффициент расхода (аналогично п.12, часть 4);

 v_{1t} , м³/кг – удельный объем пара за решеткой при адиабатном процессе расширения (по *hs* - диаграмме).

16. Высота сопловой решетки, мм:

$$l_1 = 10^3 \cdot \frac{F_1}{\pi \cdot d_{\rm cp} \cdot \sin\alpha_1}.$$
(89)

 l_1 должна быть ≥ 12 мм – технологическое ограничение на изготовление лопаток.

Если расчетное значение $l_1 < 12$ мм, то следует:

- оптимизировать профиль путем подбора угла α₁ (следует максимально снизить угол);
- уменьшить d_{cp} за счет снижения $\frac{u}{c_{b}}$;
- снизить располагаемый теплоперепад сопловой решетки за счет увеличения реактивности (θ).

17. Располагаемый теплоперепад рабочей решетки, кДж/кг: $h_{0p} = \theta \overline{H}_0.$ (90)

18. Теоретическая скорость пара на выходе из рабочей решетки, м/с:

$$w_{2t} = \sqrt{2 \cdot h_{0p} \cdot 10^3 + w_1^2}.$$
(91)

19. Действительная скорость пара на выходе из рабочей решетки, м/с:

$$w_2 = \psi \cdot w_{2t}. \tag{92}$$

$$\psi = \sqrt{1 - \xi_p}.\tag{93}$$

Коэффициент потерь энергии на первой рабочей решетке $\xi_{\rm p}$ определяют по аналогии с п.17, часть 4.

20. Потери в рабочей решетке, кДж/кг:
$$\Delta h_p = \xi_p \cdot h_{0p}. \tag{94}$$

21. Выходная площадь рабочей решетки, м²:

$$F_2 = \frac{D \cdot v_{2t}}{\mu_2 \cdot w_{2t}}.$$
 (95)

где:µ₂- коэффициент расхода (аналогично п.12, часть 4);

 v_{2t} , м³/кг – удельный объем пара за решеткой при адиабатном процессе расширения (по *hs* - диаграмме).

22. Высота рабочих лопаток, мм:

$$l_2 = l_1 + \Delta.$$
 (96)

где Δ величина перекрыши для безударного входа потока.

23. Угол выхода из рабочей решетки эффективный:

$$\sin\beta_{2\mathfrak{I}} = \frac{F_2}{\pi \cdot d_{\rm cp} \cdot e \cdot l_2}.$$
⁽⁹⁷⁾

Откуда определяют $\beta_{2\ni}$.

24. Строят треугольники скоростей, откуда определяют скорость выхода из рабочей решетки *c*₂(м/с) и ее угол α₂.

25. Выбирают профиль рабочей решетки (по атласу) и определяют его характеристики: \overline{t} – относительный шаг; b – хорду профиля.

26. Потери в рабочей решетке на трение и от парциального подвода (аналогично п.51, части 3), кДж/кг:

$$\Delta h_{\rm Tp+napu} = h_{0c} (\xi_{\rm Tp} + \xi_{\rm napu}). \tag{98}$$

где: $\xi_{\rm TD}$ - относительная потеря на трение:

$$\xi_{\rm Tp} = k_{\rm Tp} \frac{d_{\rm cp}^2}{F_1} \cdot \left(\frac{u}{c_{\rm \varphi}}\right)^3. \tag{99}$$

Потери от парциального подвода в первой активной ступени могут сохраняться на уровне 1...2%, а при неплавном профилировании (например, при резком изменении диаметра диска активной ступени по отношению к ступени скорости) или неоптимальных решениях по аэродинамике потока могут достигать и более высоких значений. Обычно $\xi_{парц}=0,01...0,03$.

27. Потери с выходной скоростью, кДж/кг:

$$\Delta h_{\rm BC} = \frac{c_2^2}{2}.\tag{100}$$

28. Потери с выходной скоростью и потери на трение и от парциального подвода пара откладываются на *hs* - диаграмме.

29. Результаты расчета первой активной ступени сводят в таблицу.

Пример

Исходные данные для расчета первой активной ступени:

Давление на входе в ступень $p_0 = p_6 = 4,6$ МПа.

Давление на выходе из ступени p_2 =4,04 Мпа=40,4 бар.

Расход пара через ступень D=48,6 кг/с.

Энтальпия пара на входе в ступень (из предварительного расчета, по *hs*-диаграмме) $h_0 = h_8 = 3355$ кДж/кг.

Удельный объем пара на входе в ступень (из предварительного расчета, по *hs*-диаграмме) $v_0 = v_8 = 0,071 \text{ м}^3/\text{кг}.$

Адиабатный теплоперепад на ступень (из предварительного расчета, табл.2). $\Delta H = 45,25$ кДж/кг.

Скорость пара на входе в ступень из расчета ступени скорости, рис.16). $c_0 = c'_2 = 137 \ m/c$.

Число оборотов n=50 с⁻¹.

1. Располагаемый теплоперепад на ступени от параметров торможения

$$\overline{H}_0 = \Delta H + \frac{c_0^2}{2} \cdot 10^{-3} = 45250 + \frac{137^2}{2} = 54635 \frac{\Lambda m}{\kappa r} = 54,6 \frac{\kappa \Lambda m}{\kappa r}.$$

1. Фиктивная скорость

$$c_{\Phi} = \sqrt{2 \cdot \overline{H}_0 \cdot 10^3} = \sqrt{2 \cdot 54635} = 331 \frac{M}{c}$$

2. Степень реакции θ ступени. Примем $\theta = 0.05$.

- 3. Оптимальное отношение $\left(\frac{u}{c_{\phi}}\right)_{\text{опт}}$. Принимаем $\left(\frac{u}{c_{\phi}}\right)_{\text{опт}} = 0,5$.
- 4. Окружная скорость

$$u = c_{\phi} \left(\frac{u}{c_{\phi}}\right)_{\text{опт}} = 331 \cdot 0,5 = 165,5 \frac{M}{C}$$

5. Средний диаметр ступени

$$d_{\rm cp} = rac{u}{\pi \cdot n} = rac{165,5}{3,14 \cdot 50} = 1,05$$
 м.

6. Располагаемый теплоперепад сопловой решетки

$$h_{0c} = (1 - \theta)\overline{H}_0 = (1 - 0.05) \cdot 54.6 = 52 \frac{\kappa \mu \pi}{\kappa \Gamma}.$$

- Построим процесс расширения пара в первой нерегулируемой ступени в *hs*-диаграмме, рис.17. давление за сопловой решеткой *p*₁=4 МПа; удельный объем за сопловой решеткой *v*_{1t}=0,079 м³/кг.
- 8. Теоретическая скорость выхода пара из сопловой решетки $c_{1t} = \sqrt{2h_{0c}} = \sqrt{2 \cdot 52000} = 322 \frac{M}{c}.$

Скорость звука a_{1t}

$$a_1 = \sqrt{k \cdot p_1 \cdot v_{1t}} = \sqrt{1,276 \cdot 4000000 \cdot 0,079} = 635 \frac{M}{c}.$$

Число Маха

$$M_{1t} = \frac{c_{1t}}{a_{1t}} = \frac{322}{635} = 0,51.$$

Течение дозвуковое.

9. Из приложения 3 выбираем сопловую решетку C-5515A (С – означает сопловая, 55 0 – угол входа, 15 0 - угол выхода эффективный (α_{19}). Для данного профиля M до 0,9.

Характеристика профиля: $\bar{t} = 0,72 \dots 0,87$ – относительный шаг, b_1 =45 мм – хорда профиля.

Рис.17. Процесс расширения пара в первой нерегулируемой ступени в *hs*диаграмме

10. В расчетах принят коэффициент потерь для сопловых и рабочих решеток $\xi_c = 0,083$.

11. Потери в соплах

$$\Delta h = \xi_c \cdot h_{0c} = 0,083 \cdot 52 = 4,3 \frac{\kappa \square \#}{\kappa \Gamma}.$$

12. Действительная скорость выхода из сопл

$$c_1 = \psi \cdot c_{1t} = 0,96 \cdot 322 = 309 \frac{M}{c}.$$

Коэффициент потерь

$$\psi = \sqrt{1 - \xi_c} = \sqrt{1 - 0.083} = 0.96.$$

13. Построим треугольник скоростей рис.18, откуда определим скорость выхода из направляющей решетки $w_l = 162$ м/с и угол выхода $\beta_l = 31^0$.

Рис.18. Треугольники скоростей для первой нерегулируемой ступени (второй ступени)

15. Площадь сечения сопловой решетки

$$F_1 = \frac{D \cdot v_{1t}}{\mu_1 \cdot c_{1t}} = \frac{48.6 \cdot 0.08}{0.99 \cdot 322} = 0.012 \,\mathrm{m}^2.$$

Принимаем коэффициент расхода µ1=0,99.

16. Высота сопловой решетки

$$l_1 = 10^3 \cdot \frac{F_1}{\pi \cdot d_{\rm cp} \cdot \sin\alpha_1} = \frac{0,012 \cdot 10^3}{3,14 \cdot 1,05 \cdot \sin15} = 14 \text{ Mm}.$$

$$l_l = 14 > 12 \text{ Mm}.$$

17. Располагаемый теплоперепад рабочей решетки

$$h_{0p} = \theta \overline{\cdot H}_0 = 0,05 \cdot 54,6 = 2,7 \frac{\kappa \mu \pi}{\kappa \Gamma}.$$

18. Теоретическая скорость пара на выходе из рабочей решетки

$$w_{2t} = \sqrt{2 \cdot h_{0p} \cdot 10^3 + w_1^2} = \sqrt{2 \cdot 2700 + 162^2} = 178 \frac{M}{c}.$$

19. Действительная скорость пара на выходе из рабочей решетки

$$\psi = \sqrt{1 - \xi_p} = \sqrt{1 - 0.083} = 0.96$$

Коэффициент потерь энергии рабочей решетке $\xi_{\rm p} = 0,083.$

$$w_2 = \psi \cdot w_{2t} = 0.96 \cdot 178 = 171 \frac{M}{c}.$$

- 20. Потери в рабочей решетке $\Delta h_p = \xi_p \cdot h_{0p} = 0,083 \cdot 2,7 = 0,22.$
- 21. Выходная площадь рабочей решетки $F_2 = \frac{D \cdot v_{2t}}{\mu_2 \cdot w_{2t}} = \frac{48,6 \cdot 0,09}{0,99 \cdot 178} = 0,025 \text{ м}^2.$

Принимаем коэффициент расхода µ2=0,99.

- 22. Высота рабочих лопаток $l_2 = l_1 + \Delta = 14 + 3 = 17 \text{ мм}.$
- 23. Угол выхода из рабочей решетки эффективный $sin\beta_{23} = \frac{F_2}{\pi \cdot d_{\rm cp} \cdot e \cdot l_2} = \frac{0,025}{3,14 \cdot 1,05 \cdot 0,8 \cdot 0,017} = 0,557.$ Тогда $\beta'_2 = \beta'_{23} = 33,9^0.$

24. Из треугольника скоростей (рис.18) определим скорость выхода рабочей решетки $c_2=99$ м/с и угол выхода $\alpha_2=103^{0}$.

25. Выберем профиль рабочей лопатки (приложения 3).

Профиль Р2314А, $\bar{t} = 0,6...0,75$ – относительный шаг; $b_2=26$ мм – хорда профиля; $\beta_I=20...30^{0}$ – расчетный угол входа потока; $\beta_{2_3}=12...16^{0}$ – эффективный угол выхода потока.

26. Потери в рабочей решетке на трение и от парциального подвода

$$\xi_{\rm Tp} = k_{\rm Tp} \frac{d_{\rm cp}^2}{F_1} \cdot \left(\frac{u}{c_{\rm \varphi}}\right)^3 = 0.005 \frac{1.05^2}{0.012} \left(\frac{166}{331}\right)^3 = 0.058.$$
$$\Delta h_{\rm Tp+napu} = h_{0c} \left(\xi_{\rm Tp} + \xi_{\rm napu}\right) = 4.3 \cdot (0.058 + 0.02) = 0.34.$$

27. Потери с выходной скоростью

$$\Delta h_{\rm BC} = \frac{c_2^2}{2} = \frac{99^2}{2} = 4900 \frac{\Delta m}{\kappa r} = 4.9 \frac{\kappa \Delta m}{\kappa r}.$$

28. Потери с выходной скоростью и потери на трение и от парциального подвода пара откладываем на *hs*-диаграмме, рис.17.

29. Результаты расчета первой активной ступени сводим в табл.10.

T C 10	C	~			
$1a0\pi u \pi a 10$	Сволная	таюлина	резупьтатов	пасчетов активнои	ступени
таолица то.	сводная	пасстица	pesymbratob	pae letob altimbilon	erymenni

N⁰	Наименование	Размер-	Решетка	
		ность	сопловая	рабочая
1	2	3	4	5
1	Расход пара, D	кг/с	4	8,6
2	Начальное давление, <i>p</i> ₀	МΠа	4	,6
3	Энтальпия пара на входе в ступень, h_0	кДж/кг	33	355
4	Располагаемый теплоперепад ступени, <i>H</i> ₀	кДж/кг	2	45
5	Скорость пара на входе в ступень, <i>c</i> ₀	м/с	1	37
6	Располагаемый теплоперепад ступени от параметров торможения, \overline{H}_0	кДж/кг	4	55

Окончание табл.10

1		2		4
1	2	3	4	
7	Фиктивная скорость, c_{ϕ}	м/с	331	
8	Степень ракции, в	_	0,05	
9	Отношение скоростей, u/c_{ϕ}	_	0,5	
10	Окружная скорость, и	м/с	1	66
11	Средний диаметр, d_{cp}	М	1	,05
12	Располагаемый теплоперепад решетки, <i>h</i> _{0i}	кДж/кг	52	2,7
13	Теоретическая скорость выхода, <i>c</i> _{1t} , <i>w</i> _{2t}	м/с	322	178
14	Число Маха, М	_	0,51	
15	Решетка	ТИП	C5515A	P2314A
16	Относительный шаг, \overline{t}	—	0,8	0,7
17	Степень парциальности, е	_	0,8	
18	Коэффициент потерь, ξ	От.ед.	0,083	
19	Потеря энергии в решетке, Δh	кДж/кг	4,3	2,2
20	Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂	м/с	309	171
21	Угол входа, $\alpha_0 = \alpha'_2$, β_1	0	55	23
22	Угол выхода, α ₁ , α ₂	0	15	103
23	Скорость выхода, <i>w</i> ₁ , <i>c</i> ₂	м/с	171	99
24	Коэффициент расхода, μ		0,99	0,99
25	Выходная площадь, F	M ²	0,012	0,025
26	Высота лопатки, <i>l</i>	ММ	14	17
27	Относительные потери от парциальности, $\xi_{парц}$	От.ед.	0,02	
28	Относительные потери на От.ед. 0,058		058	
29	Потеря с выходной скоростью, $\Delta h_{\rm B,c}$	кДж/кг	4	1,9

6. Детальный расчет последней ступени турбины

1. Исходные данные (с учетом данных табл.1, 2, 3 и рис.1, 2, 3, части 2).

Давление на выходе $p_2 = p_{\kappa}$, Мпа.

Энтальпия на выходе $h_2 = h_7$ (часть 3, п. 5,2), кДж/кг.

Энтропия на выходе $s = s_7$, кДж/кг·К.

Теплоперепад на ступень Н₀, кДж/кг (табл.2).

Энтальпия на входе h_0 ($h_0 = h_2 + H_0$), кДж/кг.

Давление на входе в ступень p_0 , МПа (по *hs* диаграмме по *s* и h_0).

Расход пара через ступень *D*, кг/с (п.4, часть 8).

Расчет ступени ведется по трем сечениям: корневой, средний, периферийный.

2. Ометаемая площадь выхода из последней ступени, м²:

$$\Omega = \frac{D}{\left(\frac{c_2}{v_2}\right)}.$$
(101)

где v_2 , $M^3/кг$ – удельный объем за последней ступенью при параметрах пара в конденсаторе (p_2 , *s* по *hs*-диаграмме),

с₂ скорость пара за последней ступенью, м/с:

$$c_2 = \sqrt{2 \cdot \Delta H_{\text{B.C}} \cdot 10^3}.$$
 (102)

Потерю с выходной скоростью $\Delta H_{\text{в.с}}$ рекомендовано принимать на уровне 16...54 кДж/кг. Меньшие значения для современных турбин большой мощности.

Площадь выхода должна быть меньше 7 м², что удовлетворят условиям практической реализации без разделения потоков ЦНД.

3. Описанный (периферийный) диаметр последней ступени, м: $d = \sqrt{\frac{4 \cdot \Omega}{\pi}}.$ (103)

4. Высота рабочей l_2 и сопловой l_1 лопаток последней ступени принимается по аналогам и с учетом опыта проектировния.

Величина перекрыши может составлять $\Delta = 10...20$ мм, большие значения для больших высот лопаток.

5. Средний и корневой диаметр последней ступени, мм:

$$d_{\rm cp} = d - l_2. \tag{104}$$

$$d_{\kappa} = d - 2 \cdot l_2. \tag{105}$$

6. Располагаемый теплоперепад на ступени от параметров торможения, кДж/кг:

$$\bar{H}_0 = H_0 + \frac{c_0^2}{2} \cdot 10^{-3}.$$
 (106)

В этом выражении выходную скорость предшествующей ступени c_2 (она же скорость входа в последнюю ступень, c_0) допустимо принять из условия $c_2^{\text{пром}} < c_2 < c_2^{\text{посл}}$, где $c_2^{\text{пром}} -$ выходная скорость промежуточной ступени отсека (для рассматриваемого примера $c_2^{\text{пром}}$ можно принять равной 200 м/с), $c_2^{\text{посл}}$ – выходная скорость за последней ступенью (для рассматриваемого примера по п.2, части 6 c_2).

7. Степень реактивности.

У корня: θ_{κ} , принимают в рамках рекомендованного диапазона θ =0,05...0,3.

На среднем диаметре:

$$\theta_{\rm cp} = 1 - (1 - \theta_{\rm K}) \left(\frac{r_{\rm cp}}{r_{\rm K}}\right)^{-1,7}.$$
(107)

где $r_{\rm cp} / r_{\rm \kappa}$ – отношение радиусов. У периферии:

$$\theta_{\rm nep} = 1 - (1 - \theta_{\rm K}) \left(\frac{r_{\rm nep}}{r_{\rm K}} \right)^{-1,7}.$$
(108)

где $r_{\text{пер}}/r_{\text{к}}$ – отношение радиусов.

8. Здесь и далее расчет ведется по трем сечениям: у корня, на среднем диаметре, у периферии лопатки.

Располагаемый теплоперепад сопловой решетки, кДж/кг:

$$h_{0c} = (1 - \theta)\bar{H}_0. \tag{109}$$

9. Строят процесс расширения в *hs*-диаграмме в трех сечениях, рис.19, откуда для них определяют термодинамические характеристики потока p_1 (МПа) и v_1 (м³/кг).

10. Фиктивная скорость, м/с:

$$c_{\Phi} = \sqrt{2 \cdot \overline{H}_0 \cdot 10^3}.$$
(110)

11. Оптимальное отношение $(u/c_{\phi})_{ont}$ определяют в

зависимости от степени реакции θ из следующих соображений (табл.11):

Таблица11. Оптимальное отношение (u/c_{*})

	() I) OIII
$\left(u/c_{\phi}\right)_{\text{ontr}}$	θ
0,220,3	0,020,12
0,420,55	0,020,4
0,550,65	0,5

12. Окружная скорость, м/с:

$$u = c_{\phi} \left(\frac{u}{c_{\phi}}\right)_{\text{опт}}.$$
(111)

13. Теоретическая скорость выхода из сопловой решетки (м/с) и число Маха:

$$c_{1t} = \sqrt{2 \cdot h_{0c}}.\tag{112}$$

$$M_{1t} = \frac{c_{1t}}{a_{1t}}.$$
 (113)

$$a_1 = \sqrt{k \cdot p_2 \cdot v_{2t}}.\tag{114}$$

14. Выбор профиля сопловой решетки.

Характер течения (околозвуковое/сверхзвуковое) обусловливает тип профиля и его характеристики: \overline{t} – относительный шаг; число Маха; α_1 – угол выхода потока, др.

15. Коэффициент потерь ξ_c и степень парциальности *е* принимается аналогично расчетам предыдущих ступеней с учетом влажности в ступени (часть 3).

16. Потери в сопловой решетке
$$\Delta h_c$$
, кДж/кг:
 $\Delta h_c = \xi_c \cdot \overline{H}_0.$ (115)

17. Действительная скорость на выходе из сопл, м/с:

$$c_1 = \psi \cdot c_{1t}. \tag{116}$$

$$\psi = \sqrt{1 - \xi_c}.\tag{117}$$

18. Строят треугольники скоростей (аналогично ступени скорости), рис.20, откуда определяют скорость на выходе из сопл $w_1(M/c)$ и ее угол β_1 .

19. Площадь сечения сопловой решетки у корня, м²:

$$F_1 = \frac{D \cdot v_{1t}}{\mu_1 \cdot c_{1t}}.\tag{118}$$

где: μ_1 – коэффициент расхода (аналогично п.12, часть 4);

 v_{1t} , м³/кг – удельный объем пара за решеткой при адиабатном процессе расширения (по *hs*-диаграмме).

20. Число сопловых лопаток, шт:

$$z = \frac{\pi \cdot d_{\kappa} \cdot e}{b_1 \cdot \bar{t}}.$$
(119)

Число сопловых лопаток не может быть слишком маленьким (<<70...80 шт.) по условиям веерности последней ступени.

21. Располагаемый теплоперепад рабочей решетки, кДж/кг: $h_{0p} = \theta \cdot \overline{H}_0.$ (120)

22. Теоретическая скорость пара на выходе из рабочей решетки, м/с:

$$w_{2t} = \sqrt{2 \cdot h_{0p} \cdot 10^3 + w_1^2}.$$
 (121)

23. Действительная скорость пара на выходе из рабочей решетки, м/с:

$$w_2 = \psi \cdot w_{2t}.\tag{122}$$

$$\psi = \sqrt{1 - \xi_p}.\tag{123}$$

Коэффициент потерь энергии $\xi_{\rm p}$ определяют по аналогии с п.17, часть 5.

24. Эффективный угол выхода из рабочей решетки:

$$\beta_{2\mathfrak{z}} = \arcsin\alpha_1 \cdot \frac{w_{1t}}{v_{1t}} \cdot \frac{v_{2t}}{w_{t2}}.$$
(124)

где: $w_{1t}, w_{2t}, \text{ м/c}$ – теоретическая скорость выхода из сопловой и рабочей решеток; v_{1t} , v_{2t} – удельный объем пара в соответствующей точке процесса расширения за сопловой и рабочей решеткой.

25. Угол выхода β_2 из рабочей решетки в данном примере определяют с учетом поправки на косой срез $\delta=5...9^\circ$:

$$\beta_2 = \beta_{23} + \delta. \tag{125}$$

26. С учетом построения треугольников скоростей выбирают профиль рабочей решетки. Определяют его характеристики: \overline{t} – относительный шаг; Число Маха; b – хорду; W_{\min} – минимальный момент сопротивления профиля, см³.

27. Площадь проходного сечения рабочей решетки у корня, м²:

$$F_2 = \frac{D \cdot v_{2t}}{\mu_2 \cdot c_{1t}}.$$
(126)

где: μ_2 – коэффициент расхода (аналогично п.12, часть 4);

 v_{2t} , м³/кг – удельный объем пара за решеткой при адиабатном процессе расширения (по *hs*-диаграмме).

28. Число рабочих лопаток, шт:

$$z = \frac{\pi \cdot d_{\kappa} \cdot e}{b_2 \cdot \bar{t}}.$$
(127)

Где: е – степень парциальности;

 \overline{t} – относительный шаг.

Хорду рабочих лопаток назначают с учетом хорды сопловых лопаток так, что $b_2 \approx (0,55...0,65) \cdot b_1$.

29. Относительные потери в ступени на трение и с выходной скоростью:

$$\xi_{\rm Tp} = k_{\rm Tp} \frac{d_{\rm cp}^2}{\sqrt{F_1 \cdot F_2}} \cdot \left(\frac{u_{\rm cp}}{c_{\rm \phi}}\right)^3. \tag{128}$$

где коэффициент трения принят $k_{\rm Tp}$ =0,0005 (аналогично расчету первой активной ступени):

$$\xi_{\rm CB} = \frac{\Delta H_{\rm BC}}{H_0}.\tag{129}$$

30. Использованный теплоперепад в ступени, кДж:

$$H_{\mu} = H_0 (1 - \xi_{\rm Tp} - \xi_{\rm Bc}).$$
 (130)

- 31. Внутренняя мощность ступени, кВт: $P = D \cdot H_{\mu}.$ (131)
- 32. Внутренний относительный КПД ступени:

$$\eta_{0i} = \frac{H_{\mu}}{H_0}.$$
 (132)

33. Результаты расчета последней ступени сводят в таблицу.

Пример

1. Исходные данные (с учетом данных табл.1, 2, 3 и рис.1, 2, 3, части 2):

Давление на выходе $p_2 = p_{\kappa} = 0,0035$ Мпа. Энтальпия на выходе $h_2 = h_7 = 2192$ кДж/кг. Энтропия на выходе $s=s_7=7,33$ кДж/кг·К. Теплоперепад на ступень $H_0=102,5$ кДж/кг. Энтальпия на входе $h_0=1292+103=2295$ кДж/кг. Давление на входе в ступень $p_0=0,0079$ Мпа. Расход пара через ступень D=48,06-3,6-5,4-1,8-1,8=35,5 кг/с.

Расчет ступени ведется по трем сечениям: корневой, средний, периферийный.

2. Ометаемая площадь выхода из последней ступени

$$\Omega = \frac{D}{\left(\frac{c_2}{v_2}\right)} = \frac{35,5}{\left(\frac{270}{37}\right)} = 4,9 \text{ m}^2.$$

Удельный объем за последней ступенью при параметрах пара в конденсаторе (p_2 , *s* по *hs*-диаграмме) $v_2=37 \text{ м}^3/\text{кг}$.

Скорость пара за последней ступенью

$$c_2 = \sqrt{2 \cdot \Delta H_{\text{B,C}} \cdot 10^3} = \sqrt{2 \cdot 36450} = 270 \frac{\text{M}}{\text{c}}.$$

...

Примем потерю с выходной скоростью $\Delta H_{\text{в.c=}}=36,450$ кДж/кг. Площадь выхода $\Omega=4,9<7\text{ м}^2$, что условиям практической реализации без разделения потоков ЦНД.

3. Описанный (периферийный) диаметр последней ступени

$$d = \sqrt{\frac{4 \cdot \Omega}{\pi}} = \sqrt{\frac{4 \cdot 4,9}{3,14}} = 2,498$$
 м.

4. Примем: высоту рабочей лопатки $l_2 = 510$ мм, высоту сопловой лопатки $l_1 = 510$ мм.

5. Средний диаметр последней ступени

 $d_{\rm cp} = d - l_2 = 2498 - 510 = 1988$ мм.

Корневой диаметр последней ступени

 $d_{\kappa} = d - 2 \cdot l_2 = 2498 - 2 \cdot 510 = 1478$ мм.

6. Располагаемый теплоперепад на ступени от параметров торможения.

Примем *c*₀=200 м/с.

$$\overline{H}_0 = H_0 + \frac{c_0^2}{2} \cdot 10^{-3} = 102,5 + \frac{200^2}{2} \cdot 10^{-3} = 142,5 \frac{\kappa \mu \pi}{\kappa r}$$

7. Степень реактивности:

У корня: $\theta_{\kappa} = 0,2$. На среднем диаметре

$$\theta_{\rm cp} = 1 - (1 - \theta_{\rm K}) \left(\frac{r_{\rm cp}}{r_{\rm K}}\right)^{-1,7} = 1 - (1 - 0,2) \left(\frac{994}{739}\right)^{-1,7} = 0,41.$$

У периферии

$$\theta_{\text{nep}} = 1 - (1 - \theta_{\text{K}}) \left(\frac{r_{\text{nep}}}{r_{\text{K}}}\right)^{-1,7} = 1 - (1 - 0.2) \left(\frac{1249}{739}\right)^{-1,7} = 0.53.$$

8. Располагаемый теплоперепад сопловой решетки: У корня

$$h_{0c} = (1 - \theta)\bar{H}_0 = (1 - 0.2) \cdot 139 = 111 \frac{\kappa \mu \pi}{\kappa \Gamma}.$$

На среднем диаметре

$$h_{0c} = (1 - \theta)\bar{H}_0 = (1 - 0.41) \cdot 139 = 82 \frac{\kappa \mu \pi}{\kappa \Gamma}.$$

У периферии лопатки

$$h_{0c} = (1 - \theta)\bar{H}_0 = (1 - 0.53) \cdot 139 = 65 \frac{\kappa \mu \pi}{\kappa r}.$$

9. Построим процесс расширения в *hs*-диаграмме в трех сечениях, рис.19.

Определим термодинамические характеристики потока:

	<u><i>p</i>₁,MIIIa</u>	<u>V1, М³/КГ</u>
Корень	0,0045	30
Средний диаметр	0,0056	23
периферия	0,0065	19

10. Фиктивная скорость

$$c_{\phi} = \sqrt{2 \cdot \overline{H}_0 \cdot 10^3} = \sqrt{2 \cdot 139000} = 527 \frac{M}{c}.$$

11. Оптимальное отношение $\left(u/c_{\phi}\right)_{\text{опт}}$.

Примем: Корень 0,5. Средний диаметр 0,55. Периферия 0,6.

Рис.19. Процесс расширения пара для последней ступени турбины

12. Окружная скорость: У корня

$$u = c_{\phi} \left(\frac{u}{c_{\phi}}\right)_{\text{опт}} = 527 \cdot 0,5 = 263 \frac{\text{M}}{\text{c}}.$$

На среднем диаметре

$$u = c_{\phi} \left(\frac{u}{c_{\phi}}\right)_{\text{опт}} = 527 \cdot 0.55 = 290 \frac{\text{M}}{\text{c}}.$$

У периферии

$$u = c_{\phi} \left(\frac{u}{c_{\phi}}\right)_{\text{опт}} = 527 \cdot 0,6 = 316 \frac{\text{M}}{\text{c}}.$$

 Теоретическая скорость выхода из сопловой: У корня

$$c_{1t} = \sqrt{2 \cdot h_{0c}} = \sqrt{2 \cdot 111000} = 471 \frac{M}{c}.$$

На среднем диаметре

$$c_{1t} = \sqrt{2 \cdot h_{0c}} = \sqrt{2 \cdot 82000} = 405 \frac{M}{c}.$$

У периферии

$$c_{1t} = \sqrt{2 \cdot h_{0c}} = \sqrt{2 \cdot 65000} = 361 \frac{M}{c}.$$

Скорость звука определяют в точке выхода из рабочей решетки $p_2=p_{\rm K}=0,0035~{\rm M\Pi a}=3500{\rm \Pi a}.$

$$v_{2t} = v_2 = 37 \text{ m}^3/\text{kr.}$$
$$a_1 = \sqrt{k \cdot p_2 \cdot v_{2t}} = \sqrt{1,276 \cdot 3500 \cdot 37} = 406 \frac{\text{M}}{\text{c}}.$$

Число Маха:

У корня

$$M_{1t} = \frac{c_{1t}}{a_{1t}} = \frac{471}{406} = 1,16.$$

На среднем диаметре

$$M_{1t} = \frac{c_{1t}}{a_{1t}} = \frac{405}{406} = 1,00.$$

У периферии

$$M_{1t} = \frac{c_{1t}}{a_{1t}} = \frac{361}{406} = 0,89.$$

14. Выбор профиля сопловой решетки.

Течение околозвуковое, что обуславливает профиль типа Б, а именно С 9015Б с характеристиками: =0,7...0,85 – относительным шагом; M=0,8...1,15; α_1 =15⁰ – угол выхода потока, b_1 =52 мм – хорда профиля.

15. Примем коэффициент потерь $\xi_c = 0,04$ и степень парциальности e=l.

Π. .

16. Потери в сопловой решетке

$$\Delta h_c = \xi_c \cdot \overline{H}_0 = 0,04 \cdot 142,5 = 5,7 \frac{\kappa \mu \pi}{\kappa \Gamma}.$$

17. Коэффициент потерь

$$\psi = \sqrt{1 - \xi_c} = \sqrt{1 - 0.04} = 0.98.$$

Действительная скорость на выходе из сопл: У корня

$$c_1 = \psi \cdot c_{1t} = 0,98 \cdot 471 = 462 \frac{M}{c}$$

На среднем диаметре

$$c_1 = \psi \cdot c_{1t} = 0,98 \cdot 405 = 397 \frac{M}{c}$$

У периферии

$$c_1 = \psi \cdot c_{1t} = 0,98 \cdot 361 = 354 \frac{M}{c}$$

18. Построим треугольники скоростей рис.20.

Для рассматриваемого примера:

	<i>w</i> ₁ ,м/с	β_1
Корень	224	38
Средний диаметр	156	52
Периферия	118	75

Рис.20. Треугольники скоростей и профиль крутки лопаток последней ступени

19. Площадь сечения сопловой решетки у корня,

$$F_1 = \frac{D \cdot v_{1t}}{\mu_1 \cdot c_{1t}} = \frac{35, 5 \cdot 30}{0,99 \cdot 462} = 2,33 \,\mathrm{m}^2.$$

Принимаем коэффициент расхода µ₁=0,99.

20. Число сопловых лопаток

$$z = \frac{\pi \cdot d_{\rm K} \cdot e}{b_1 \cdot \bar{t}} = \frac{3,14 \cdot 1478 \cdot 1}{52 \cdot 0,8} = 112.$$

21. Располагаемый теплоперепад рабочей решетки: У корня

$$h_{0p} = \theta \cdot \overline{H}_0 = 0.2 \cdot 139 = 27.8 \frac{\kappa \mu}{\kappa \Gamma}.$$

На среднем диаметре

$$h_{0p} = \theta \cdot \overline{H}_0 = 0.41 \cdot 139 = 57.0 \frac{\kappa \Xi \pi}{\kappa \Gamma}.$$

У периферии

$$h_{0p} = \theta \cdot \overline{H}_0 = 0,53 \cdot 139 = 73,7 \frac{\kappa \mu}{\kappa r}$$

22. Теоретическая скорость пара на выходе из рабочей решетки:

У корня

$$w_{2t} = \sqrt{2 \cdot h_{0p} \cdot 10^3 + w_1^2} = \sqrt{2 \cdot 27800 + 224^2} = 325 \frac{M}{c}$$

На среднем диаметре

$$w_{2t} = \sqrt{2 \cdot h_{0p} \cdot 10^3 + w_1^2} = \sqrt{2 \cdot 57000 + 156^2} = 372 \frac{M}{c}$$

У периферии

$$w_{2t} = \sqrt{2 \cdot h_{0p} \cdot 10^3 + w_1^2} = \sqrt{2 \cdot 73700 + 118^2} = 402 \frac{M}{c}.$$

23. Коэффициент потерь энергии рабочей решетке $\xi_p = 0,083$.

$$\psi = \sqrt{1 - \xi_p} = \sqrt{1 - 0.083} = 0.96.$$

Действительная скорость пара на выходе из рабочей решетки: У корня

$$w_2 = \psi \cdot w_{2t} = 0,96 \cdot 325 = 312 \frac{M}{c}.$$

На среднем диаметре

$$w_2 = \psi \cdot w_{2t} = 0,96 \cdot 375 = 360 \frac{M}{c}.$$

У периферии

$$w_2 = \psi \cdot w_{2t} = 0,96 \cdot 402 = 386 \frac{M}{c}.$$

24. Эффективный угол выхода из рабочей решетки: У корня

 $\beta_{23} = \arcsin \alpha_1 \cdot \frac{w_{1t}}{v_{1t}} \cdot \frac{v_{2t}}{w_{t2}} = \arcsin \alpha_1 \frac{224}{30} \cdot \frac{37}{312} = 62,2^0.$ Ha среднем диаметре $\beta_{23} = \arcsin \alpha_1 \cdot \frac{w_{1t}}{v_{1t}} \cdot \frac{v_{2t}}{w_{t2}} = \arcsin \alpha_1 \frac{156}{23} \cdot \frac{37}{360} = 44,2^0.$

У периферии

$$\beta_{23} = \arcsin\alpha_1 \cdot \frac{w_{1t}}{v_{1t}} \cdot \frac{v_{2t}}{w_{t2}} = \arcsin\alpha_1 \frac{118}{19} \cdot \frac{37}{386} = 36,5^0.$$

25. Угол выхода из рабочей решетки с учетом поправки на косой срез:

.

У корня

$$\beta_2 = \beta_{23} + \delta = 62, 2 + 5, 8 = 68^{\circ}.$$

На среднем диаметре

$$\beta_2 = \beta_{2_3} + \delta = 44, 2+5, 8=50^0.$$

У периферии

$$\beta_2 = \beta_{2_3} + \delta = 36, 5 + 5, 5 = 42^0.$$

26. Из треугольника скоростей (рис.20) определим скорость выхода рабочей решетки *с*2 м/с и угол выхода α₂.

Для рассматриваемого примера:

	с2, м/с	α_2
Корень	324	118
Средний диаметр	280	103
Периферия	260	96

Выбираем профиль рабочей решетки Р 3525Б. Определяют его характеристики: $\overline{t} = 0,6$ – относительный шаг; Число Маха; $b_2 = 25$ мм – хорду; $W_{\min} = 0,159$ – минимальный момент сопротивления профиля, см³.

27. Площадь проходного сечения рабочей решетки у корня

$$F_2 = \frac{D \cdot v_{2t}}{\mu_2 \cdot c_{1t}} = \frac{35,5 \cdot 37}{0,99 \cdot 471} = 2,82 \,\mathrm{m}^2.$$

Принимаем коэффициент расхода µ2=0,99.

28. Число рабочих лопаток

$$z = \frac{\pi \cdot d_{\kappa} \cdot e}{b_2 \cdot \bar{t}} = \frac{3,14 \cdot 1478 \cdot 1}{25 \cdot 0,6} = 309 \text{ mT}.$$

29. Относительные потери в ступени на трение

$$\xi_{\rm Tp} = k_{\rm Tp} \frac{d_{\rm Cp}^2}{\sqrt{F_1 \cdot F_2}} \cdot \left(\frac{u_{\rm Cp}}{c_{\rm \varphi}}\right)^3 = 0,0005 \frac{1,988^2}{\sqrt{2,33 \cdot 2,82}} \cdot \left(\frac{290}{527}\right)^3 = 0,00013$$
$$u_{\rm Cp} = \frac{263 + 290 + 316}{3} = 290 \,\text{m/c}.$$

Относительные потери в ступени с выходной скоростью

$$\xi_{\rm CB} = \frac{\Delta H_{\rm BC}}{H_0} = \frac{41}{139} = 0.3.$$

Потери с выходной скоростью

$$\Delta H_{\rm BC} = \frac{c_{\rm 2cp}^2}{2} = \frac{(288)^2}{2} = 41472 \frac{\Delta m}{\kappa r} = 41 \frac{\kappa \Delta m}{\kappa r}$$
$$c_{\rm 2cp} = \frac{324 + 280 + 260}{3} = 288 \frac{m}{c}.$$

30. Использованный теплоперепад в ступени $H_{\mu} = H_0 (1 - \xi_{\text{тр}} - \xi_{\text{вс}}) = 102,5 \cdot (1 - 0,00013 - 0,3) = 72 \ \text{кДж.}$

- 31. Внутренняя мощность ступени $P = D \cdot H_{\mu} = 35,5 \cdot 72 = 2556BT = 2,6 \ \kappa BT.$
- 32. Внутренний относительный КПД ступени $\eta_{0i} = \frac{H_{\mu}}{H_0} = \frac{72}{102.5} = 0,7.$
- 33. Результаты расчета последней ступени сводят в таблицу, табл.12.

			Размер-	Решетка	
Nº	Наиме	ность	Сопло- вая	Рабо- чая	
1		3	4	5	
1	Расход пара, D		кг/с	35,5	
2	Начальное давле	ние, p_0	МΠа	0,00	79
3	Энтальпия пара н h_0	на входе в ступень,	кДж/кг	2295	
4	Располагаемый ступени, <i>H</i> ₀	теплоперепад	кДж/кг	102	,5
5	Располагаемый теплоперепад на ступени от параметров торможения, \overline{H}_0		кДж/кг	142,5	
6	Ометаемая площа	адь выхода, Ω	M ²	4,9	
7	Скорость пара ступень, <i>c</i> ₂	м/с	270		
8	Скорость пара на входе в ступень, c_0		м/с	200	
9	Потеря энерги скоростью, $\Delta H_{\rm B,c}$	и с выходной	кДж/кг	41	-
10	Описанный диаметр, <i>d</i> _п	(периферийный)	М	2,49	98
11	Высота лопаток,	l	MM	510	510
12	Средний диаметр	b, d_{cp}	М	1,98	38
13	Корневой диамет	p, d_{κ}	М	1,4	78
14	Степень реакции, θ	корень среднее сечение периферия	_	0,2 0,4 0,5	2 1 3
15	Располагаемый теплоперепад решетки, <i>h</i> _{0i}	корень среднее сечение периферия	кДж/кг	111 82 65	27,8 57 73,7
16	Фиктивная скорость, c_{ϕ}		м/с	52	7

Таблица 12. Сводная таблица результатов расчетов последней ступени

1100,4	олжение таол. 12				
1	2		3	4	
	Отношение корень			0,:	5
17	скоростей,	среднее сечение	_	0,55	
	u/c_{ϕ}	периферия		0,	6
	Ormanya	корень		26	3
18	Окружная	среднее сечение	м/с	29	0
	скорость, и	периферия		31	6
		корень		471	325
	Теоретическая	среднее сечение		405	372
19	скорость выхода, <i>c</i> _{1<i>t</i>} , <i>w</i> _{2<i>t</i>}	периферия	м/с	361	402
		корень		1,1	.6
20	Число Маха, М	среднее сечение	_	1	
	, ,	периферия		0,89	
21 Решетка			- THE	C-	P-
			ТИП	9015Б	3525Б
22	Относительный п	_	0,8	0,6	
23	Степень парциал	ьности, е	—	1	
23 24	Степень парциал Минимальный	ьности, <i>е</i> момент		1	0 1 5 9
23 24	Степень парциал Минимальный сопротивления, V	ьности, <i>е</i> момент V _{min}	- см ³	1	0,159
23 24 25	Степень парциал Минимальный сопротивления, V Коэффициент по	ьности, <i>е</i> момент V _{min} герь, ξ	- см ³ От.ед.		0,159 0,03
23 24 25	Степень парциал Минимальный сопротивления, V Коэффициент по Действительная	ьности, <i>е</i> момент V _{min} герь, ξ корень	- см ³ От.ед.	1 - 0,04 324	0,159 0,03 312
23 24 25 26	Степень парциал Минимальный сопротивления, И Коэффициент по Действительная скорость	ьности, <i>е</i> Момент V _{min} терь, ξ корень среднее сечение	 см ³ От.ед. м/с	1 - 0,04 324 280	0,159 0,03 312 360
23 24 25 26	Степень парциал Минимальный сопротивления, <i>V</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂	ьности, <i>е</i> Момент V _{min} герь, <u>ξ</u> среднее сечение периферия	 см ³ От.ед. м/с	1 - 0,04 324 280 260	0,159 0,03 312 360 386
23 24 25 26	Степень парциал Минимальный сопротивления, <i>W</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂	ьности, <i>е</i> момент V _{min} герь, ξ корень среднее сечение периферия корень	 см ³ От.ед. м/с	1 - 0,04 324 280 260 224	0,159 0,03 312 360 386 324
23 24 25 26 27	Степень парциал Минимальный сопротивления, <i>W</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂ Скорость выхода, <i>w</i> ₁ , <i>c</i> ₂	ьности, <i>е</i> Момент V _{min} герь, ξ среднее сечение периферия корень среднее сечение	 см ³ От.ед. м/с	$ \begin{array}{r} 1 \\ - \\ 0,04 \\ 324 \\ 280 \\ 260 \\ 224 \\ 156 \\ \end{array} $	0,159 0,03 312 360 386 324 280
23 24 25 26 27	Степень парциал Минимальный сопротивления, <i>W</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂ Скорость выхода, <i>w</i> ₁ , <i>c</i> ₂	ьности, <i>е</i> Момент V _{min} герь, ξ корень среднее сечение периферия корень среднее сечение периферия	_ см ³ От.ед. м/с м/с	$ \begin{array}{r} 1 \\ - \\ 0,04 \\ 324 \\ 280 \\ 260 \\ 224 \\ 156 \\ 118 \\ \end{array} $	0,159 0,03 312 360 386 324 280 260
23 24 25 26 27	Степень парциал Минимальный сопротивления, <i>W</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂ Скорость выхода, <i>w</i> ₁ , <i>c</i> ₂	ьности, <i>е</i> момент <i>V</i> _{min} герь, ξ корень среднее сечение периферия корень среднее сечение периферия корень корень	_ см ³ От.ед. м/с м/с	$ \begin{array}{c} 1 \\ - \\ 0,04 \\ 324 \\ 280 \\ 260 \\ 224 \\ 156 \\ 118 \\ 38 \\ \end{array} $	0,159 0,03 312 360 386 324 280 260 118
23 24 25 26 27 28	Степень парциал Минимальный сопротивления, W Коэффициент по Действительная скорость выхода, c ₁ , w ₂ Скорость выхода, w ₁ , c ₂ Угол, β ₁ , α ₂	ьности, <i>е</i> Момент <i>V</i> _{min} терь, ξ корень среднее сечение периферия корень среднее сечение периферия корень среднее сечение	- см ³ От.ед. м/с м/с	$ \begin{array}{r} 1 \\ - \\ 0,04 \\ 324 \\ 280 \\ 260 \\ 224 \\ 156 \\ 118 \\ 38 \\ 52 \\ \end{array} $	0,159 0,03 312 360 386 324 280 260 118 103
23 24 25 26 27 28	Степень парциал Минимальный сопротивления, <i>W</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂ Скорость выхода, <i>w</i> ₁ , <i>c</i> ₂ Угол, β ₁ , α ₂	ьности, <i>е</i> Момент V _{min} герь, ξ корень среднее сечение периферия корень среднее сечение периферия корень среднее сечение	- см ³ От.ед. м/с м/с	$ \begin{array}{c} 1\\ -\\ 0,04\\ 324\\ 280\\ 260\\ 224\\ 156\\ 118\\ 38\\ 52\\ 75\\ \end{array} $	0,159 0,03 312 360 386 324 280 260 118 103 96
23 24 25 26 27 28	Степень парциал Минимальный сопротивления, <i>W</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂ Скорость выхода, <i>w</i> ₁ , <i>c</i> ₂ Угол, β ₁ , α ₂	ьности, <i>е</i> Момент V _{min} герь, ξ корень среднее сечение периферия корень среднее сечение периферия корень среднее сечение периферия корень	 См ³ От.ед. м/с м/с	$ \begin{array}{c} 1\\ -\\ 0,04\\ 324\\ 280\\ 260\\ 224\\ 156\\ 118\\ 38\\ 52\\ 75\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 1$	0,159 0,03 312 360 386 324 280 260 118 103 96 68
23 24 25 26 27 28 29	Степень парциал Минимальный сопротивления, <i>W</i> Коэффициент по Действительная скорость выхода, <i>c</i> ₁ , <i>w</i> ₂ Скорость выхода, <i>w</i> ₁ , <i>c</i> ₂ Угол, β ₁ , α ₂	ьности, е Момент V _{min} герь, ξ корень среднее сечение периферия корень среднее сечение периферия корень среднее сечение периферия корень среднее сечение	- см ³ От.ед. м/с м/с о	$ \begin{array}{r} 1 \\ - \\ 0,04 \\ 324 \\ 280 \\ 260 \\ 224 \\ 156 \\ 118 \\ 38 \\ 52 \\ 75 \\ 15 \\ 15 \\ 15 \\ \end{array} $	0,159 0,03 312 360 386 324 280 260 118 103 96 68 50

Окон	чание табл. 12				
1	2 3		4	5	6
30	Коэффициент рас	схода, μ	_	0,99	0,99
31	Выходная площа	дь у корня, F	M ²	2,33	3,82
32	Число лопаток, z		шт.	112	309
33	Относительные потери с выходной скоростью, $\xi_{B,c}$		От.ед.	0,3	3
34	Относительные потери на трение, ξ _{тр}		От.ед.	0,000	013
35	Использованный теплоперепад в ступени, \overline{H}_{e}		кДж/кг	72	2
36	Внутренняя мощность ступени, Р		МВт	2,0	5
37	Внутренний отн ступени, η _{0i}	осительный КПД	_	0,	7

7. Расчет на прочность рабочих лопаток последней ступени

 Исходные данные: Расход пара через ступень *D*, кг/с.
 Описанный (периферийный) диаметр, *d*_п, м.
 Средний диаметр, *d*_{ср}.
 Высота рабочих лопаток, *l*₂, м.
 Давление на входе *p*₁, Мпа.
 Давление на выходе *p*₂, Мпа.
 Число лопаток, *z*.
 Минимальный момент сопротивления профиля *W*_{min}, см³.

2. Окружное усилие на одну лопатку определяют для трех сечений, Н:

$$R_u = D(w_1 \cdot \cos\beta_1 + w_2 \cdot \cos\beta_2). \tag{133}$$

3. Осевое усилие на одну лопатку определяют для наиболее нагруженного сечения, Н:

$$R_a \approx \frac{D}{Z} (c_{1a} + c_{2a}) + \frac{\pi \cdot d_{\pi} \cdot l_2}{Z} (p_1 - p_2).$$
(134)

В этом выражении $(p_1 - p_2)$ и $(c_{1a} + c_{2a})$ учитывает влияние давления и скорости на осевую составляющую усилия соответственно.

где p_1 и p_2 – давление в Па перед рабочей решеткой и за ней соответственно;

*c*_{1*a}</sub> и <i>c*_{2*a*} определят при помощи треугольников скоростей, рис.20 и 21:</sub>

$$c_{1a} = c_1 \cdot \sin\alpha_1. \tag{135}$$

$$c_{2a} = c_2 \cdot \sin\alpha_2. \tag{136}$$

- 4. Полное усилие на лопатку, Н: $R = \sqrt{R_u^2 + R_a^2}$. (137)
- 5. Изгибающие напряжения в лопатке, МПа:

$$\sigma_{_{\rm H3F}} = \frac{R \cdot l_2}{2 \cdot z \cdot e \cdot W_{min}}.$$
(138)

6. Напряжения от центробежных сил в корневом сечении лопатки, Мпа:

$$\sigma_0 = 0.5 \cdot \rho \cdot \omega^2 \cdot d_{\rm cp} \cdot l_2 \cdot 10^{-6}. \tag{139}$$

где: р – плотность стали;

ω, рад/с – угловая скорость.

7. Коэффициент разгрузки:

$$k = 1 - 0.8 \cdot \frac{3 \cdot \frac{d_{\rm cp}}{l_2} + 1}{6 \cdot \frac{d_{\rm cp}}{l_2}}.$$
 (140)

- 8. Напряжения от центробежных сил в лопатке, МПа: $\sigma = k \cdot \sigma_0.$ (141)
- 9. Полное напряжение в лопатке, МПа: $\sigma_{\Sigma} = \sigma_{uor} + \sigma.$

$$\sigma_{\Sigma} = \sigma_{_{\rm H3\Gamma}} + \sigma. \tag{142}$$

10. В соответствии с рекомендациями (например, приложений 3) подбирают марку стали. Затем оценивают возможность ее работы. Следует помнить, что, как правило, чем прочнее сталь, тем и дороже.

Для определения минимального допускаемого напряжения следует пользоваться таблицей 13.

Таолица 15. Определение минимального	о допускаемого напряжения

Материа	ал	Формула
Углеродистая	И	$\frac{\sigma_{\mathrm{B}/t}}{\sigma_{\mathrm{B}/t}}; \frac{\sigma_{0,2/t}}{\sigma_{10}}; \frac{\sigma_{10}}{\sigma_{10}}; $
теплоустойчивая стал	Ь	2,4 1,5 1,0
Аустенитная	И	$\underline{\sigma_B}$: $\underline{\sigma_{1,0/t}}$: $\underline{\sigma_{10^5/t}}$
хромоникелевая сталь	,	3,0' 1,5 ' 1,5
Чугун с	шаровидным	$\frac{\sigma_B}{12}, \frac{\sigma_{0,2}}{22}$
графитом		4,8 3,0

Выбранная сталь отвечает требованиям в том случае, когда выполняется условие

$$\sigma_{\Sigma} < [\sigma]_{\text{доп}} = [\sigma]_{\text{min}}.$$

Следует учитывать температурные условия работы. В случае расчетов последней лопатки конденсационной турбины температуры обычно не превышают 20...40 °C, а в диапазоне 20...150 °C прочностные свойства сталей практически неизменны.

11. Результаты расчетов сводят в таблицу.

Пример

1. Исходные данные: Расход пара через ступень D=35,5, кг/с. Описанный (периферийный) диаметр, $d_{\pi}=2,5$, м. Средний диаметр, $d_{cp}=1,988$ м. Высота рабочих лопаток, $l_2=0,51$, м. Давление на входе $p_1=0,0045$, МПа. Давление на выходе $p_2=0,0035$, МПа. Число лопаток, z=309. Минимальный момент сопротивления профиля *W*_{min}=0,159 см³.

2. Окружное усилие на одну лопатку определяют для трех сечений

У корня

$$R_u = D(w_1 \cdot cos\beta_1 + w_2 \cdot cos\beta_2) =$$

 $= 35,5 \cdot (224 \cdot cos38 + 312 \cdot cos68) = 10437$ H.
На среднем диаметре
 $R_u = D(w_1 \cdot cos\beta_1 + w_2 \cdot cos\beta_2) =$
 $= 35,5 \cdot (156 \cdot cos52 + 360 \cdot cos50) = 11622$ H.
У периферии
 $R_u = D(w_1 \cdot cos\beta_1 + w_2 \cdot cos\beta_2) =$
 $= 35,5 \cdot (118 \cdot cos75 + 386 \cdot cos42) = 11283$ H.

3. Осевое усилие на одну лопатку определяют для наиболее нагруженного сечения

$$R_{a} \approx \frac{D}{z} (c_{1a} + c_{2a}) + \frac{\pi \cdot d_{\pi} \cdot l_{2}}{z} (p_{1} - p_{2}) = \\ = \frac{35.5}{309} \cdot 406 + \frac{3.14 \cdot 2.498 \cdot 0.51}{309} \cdot (4500 - 3500) = \\ = 59.6 \text{ H.} \\ c_{1a} = c_{1} \cdot \sin\alpha_{1} = 462 \cdot \sin15 = 120. \\ c_{2a} = c_{2} \cdot \sin\alpha_{2} = 324 \cdot \sin118 = 286. \\ c_{1a} + c_{2a} = 120 + 286 = 406. \\ c_{1a} = c_{1} \cdot \sin\alpha_{1} = 397 \cdot \sin15 = 103. \\ c_{2a} = c_{2} \cdot \sin\alpha_{2} = 280 \cdot \sin103 = 273. \\ c_{1a} + c_{2a} = 103 + 273 = 376. \\ c_{1a} = c_{1} \cdot \sin\alpha_{1} = 364 \cdot \sin15 = 94. \\ c_{2a} = c_{2} \cdot \sin\alpha_{2} = 260 \cdot \sin96 = 259. \\ c_{1a} + c_{2a} = 94 + 259 = 353. \end{cases}$$

Рис.21. К определению поправки на скорость

- 4. Полное усилие на лопатку $R = \sqrt{R_u^2 + R_a^2} = \sqrt{11622^2 + 59.6^2} = 11622$ H.
- 5. Изгибающие напряжения в лопатке

$$\sigma_{{}_{\text{H3F}}} = \frac{R \cdot l_2}{2 \cdot z \cdot e \cdot W_{min}} = \frac{11622 \cdot 0.51}{2 \cdot 309 \cdot 1 \cdot 0.159} = 60 \text{ MIIa}.$$

6. Напряжения от центробежных сил в корневом сечении лопатки

$$\sigma_0 = 0.5 \cdot \rho \cdot \omega^2 \cdot d_{\rm cp} \cdot l_2 \cdot 10^{-6} =$$

= 0.5 \cdot 7800 \cdot 314^2 \cdot 1,988 \cdot 0.51 \cdot 10^{-6} = 390 MПа.
где ρ =7800 кг/м³ – плотность стали;
 ω , рад/с – угловая скорость.
 ω =2 πn =2 \cdot 3.14 \cdot 50=314 рад/с.

7. Коэффициент разгрузки

$$k = 1 - 0.8 \cdot \frac{3 \cdot \frac{d_{cp}}{l_2} + 1}{6 \cdot \frac{d_{cp}}{l_2}} = 1 - 0.8 \cdot \frac{3 \cdot \frac{1.988}{0.51} + 1}{6 \cdot \frac{1.988}{0.51}} = 0.57.$$

8. Напряжения от центробежных сил в лопатке $\sigma = k \cdot \sigma_0 = 0,57 \cdot 390 = 222$ МПа.

9. Полное напряжение в лопатке

 $\sigma_{\Sigma} = \sigma_{_{\rm H3F}} + \sigma = 60 + 222 = 282$ MIIa.

Для углеродистой, жаропрочной стали мартенситноферритного класса 20Х13 (выбрана для настоящего примера в качестве материала лопаток) с временным пределом прочности $\sigma_{\rm B}$ =720 МПа минимальное допускаемое напряжение составит $[\sigma]_{min} = \frac{\sigma_0}{2.4} = \frac{720}{2.4} = 300$ МПа.

N⁰	На	именование	Размерность	Значение			
1		2	3	4			
2	Окружно	корень		10437			
	е усилие на	средний	ц	11622			
	одну	диаметр	11				
	лопатку, <i>R</i> _u	периферия		11283			
2	Осевое у	силие на одну	Н	59,6			
	лопатку, R_a						
3	Полное уси	лие на лопатку, R	Н	11622			
4	Изгибающи	ие напряжения в	МПа	60			
	лопатке, оизг						
5	Напряжени	я от центробежных		390			
	сил в корнево	м сечении лопатки,	МПа				
	σ_0						
6	Коэффицие	ент разгрузки, <i>k</i>	_	0,56			
7	Напряжени	я от центробежных	МПа	222			
	сил в лопатке,	σ					
8	Полное наг	пряжение в лопатке,	МПа	282			
	σ_{Σ}	-					
9	Материал л	юпатки	сталь	20X13			
10	Минималы	юе допускаемое	МПа	300			
	напряжение, [с	5] _{min}					

T (10	п							
Габлица	13	Примен	ר ו	пасчета	H2 1	почность	nar	очеи	попатки
таолица	15.	ripmic	·	pue ieiu	mu i		pu	JO ION	Jonarkh

Библиографический список

- 1. Щегляев А.В. Паровые турбины. М.: Энергеия, 1976. 368 с.
- Теплоэнергетика и теплотехника: Общие вопросы: Справочник / Под общ. Ред. Чл.-корр. РАН А.В.Клименко и проф. В.М.Зорина. – М.: Изд-во МЭИ, 1999. – 528 с.
- 3. Щинников П.А. Расчет паровой турбины: учебное пособие. Новосибирск, 2012 -73с.
- 4. Варечкин Ю.В., Батялов А.А., Храмов М.Ю. Судовые турбомашины: учебное пособие. Н.Новгород: ВГАВТ, 2010. -140с.
- 5. Варечкин Ю.В., Батялов А.А., Храмов М.Ю. Судовые турбомашины: методические указания. Н.Новгород: ВГАВТ, 2008. -18с.

Приложения

Приложение 1

Варианты заданий										
	N ₃ , Bm	р, бар	$t_{0,} {}^{0}C$	рк, бар	<i>t</i> _{ne} , ⁰ C	n, c ⁻¹				
1	2	3	4	5	6	7				
1	50	90	540	0,03	218	50				
2	51	80	540	0,04	217	50				
3	52	100	540	0,05	219	50				
4	49	70	540	0,035	213	50				
5	50	95	540	0,045	214	50				
6	48	85	540	0,04	215	45				
7	47	75	540	0,03	216	45				
8	45	60	540	0,03	213	45				
9	46	65	540	0,03	214	45				
10	45	55	540	0,035	212	45				
11	49	90	530	0,045	218	45				
12	48	80	530	0,04	217	45				
13	55	100	530	0,045	220	55				
14	52	70	530	0,03	214	55				
15	54	95	530	0,05	216	55				
16	53	85	530	0,045	215	55				
17	52	75	530	0,035	215	55				
18	51	60	530	0,035	212	55				
19	50	65	530	0,035	212	55				
20	49	55	530	0,03	211	50				
21	54	90	520	0,04	217	50				
22	48	80	520	0,04	216	45				
23	54	100	520	0,05	219	55				
24	47	70	520	0,035	218	45				
25	49	95	520	0,045	219	45				
26	46	85	520	0,04	216	45				
27	46	75	520	0,03	215	45				
28	45	60	520	0,03	214	45				
29	45	65	520	0,03	214	45				
30	46	55	520	0,03	211	45				
31	49	90	550	0,035	217	50				

					Продолжение прил.				
1	2	3	4	5	6	7			
32	48	80	550	0,045	214	50			
33	53	100	550	0,05	218	55			
34	47	70	550	0,03	212	45			
35	51	95	550	0,045	216	50			
36	50	85	550	0,035	215	50			
37	48	75	550	0,035	214	50			
38	45	60	550	0,03	213	45			
39	46	65	550	0,03	212	45			
40	45	55	550	0,03	211	45			
41	48	90	525	0,04	215	50			
42	47	80	525	0,04	214	50			
43	53	100	525	0,045	217	55			
44	50	70	525	0,035	214	55			
45	52	95	525	0,04	215	55			
46	51	85	525	0,035	214	55			
47	48	75	525	0,035	213	50			
48	46	60	525	0,03	212	45			
49	47	65	525	0,03	212	45			
50	45	55	525	0,03	211	45			
51	51	90	535	0,04	213	50			
52	50	80	535	0,04	214	50			
53	55	100	535	0,05	215	50			
54	49	70	535	0,04	212	50			
55	51	95	535	0,05	214	50			
56	50	85	535	0,045	213	50			
57	47	75	535	0,04	212	45			
58	46	60	535	0,035	211	45			
59	47	65	535	0,035	211	45			
60	46	55	535	0,035	211	45			
61	50	90	545	0,05	214	50			
62	49	80	545	0,045	214	50			
63	54	100	545	0,045	216	55			
64	51	70	545	0,04	214	55			
65	52	95	545	0,045	215	55			

Окончание прил. 1										
1	2	3	4	5	6	7				
66	51	85	545	0,045	215	55				
67	50	75	545	0,04	213	55				
68	48	60	545	0,03	212	50				
69	49	65	545	0,03	211	50				
70	45	55	545	0,03	211	45				
71	48	90	555	0,05	214	50				
72	47	80	555	0,035	213	45				
73	53	100	555	0,05	215	55				
74	49	70	555	0,035	213	50				
75	52	95	555	0,05	214	50				
76	51	85	555	0,045	214	50				
77	48	75	555	0,035	213	50				
78	47	60	555	0,035	211	50				
79	48	65	555	0,045	211	50				
80	46	55	555	0,03	211	50				

					_				• • •	, a L	бд	101 1	1 11	<u>ep</u>	P P	010	<u>, 10</u>	110	ւթա	
	S	(Х. ткДж/(кт	-0,0001	0,1510	0,2963	8,5421	8,7685	8,9718	9,1570	9,3274	9,4858	9,6340	9,7735	9,9055	10,001	10,150	10,265	10,375	10,482	10,584
0,04 6ap	h	кДж/кг	0,0	42,0	83,9	2574,8	2650,2	2726,0	2802,4	2879,6	2957,6	3036,6	3116,6	3197,5	3279,5	3362,4	3446,5	3531,6	3617,9	3705,3
p=	v	м ³ /ыт	0,0010	0,0010002	0,0010017	36,08	40,72	45,34	49,96	54,58	59,20	63,81	68,43	73,05	77,66	82,28	86,89	91,51	96,12	100,74
	S	жДж/(кг ∙К)	-0,0001	0,1510	0,2963	8,6755	8,9016	9,1048	9,2898	9,4603	9,6186	9,7668	9,9063	10,0383	10,164	10,283	10,398	10,508	10,614	10,717
= 0,03 6ap	\boldsymbol{u}	ля/жД'я	0'0	42,0	83,9	2575,0	2650,3	2726,0	2802,4	2879,6	2957,7	3036,6	3116,6	3197,5	3279,5	3362,4	3446,5	3531,6	3617,9	3705,3
.d	v	м ³ /ыт	0,001	0,0010002	0,0010017	48,13	54,30	60,46	66,62	72,78	78,93	85,09	91,24	97,40	103,55	109,70	115,86	122,01	128,17	134,32
	s	кДж/(ыт ∙К)	-0,0010	0,1510	8,7396	8,8632	9,0891	9,2921	9,4771	9,6475	9,8058	9,9539	10,0934	10,2255	10,351	10,470	10,585	10,695	10,802	10,904
= 0,02 6ap	h	na/ac∏a	0'0	42,0	2537,8	2575,3	2650,4	2726,1	2802,5	2879,7	2957,7	3036,7	3116,6	3197,5	3279,5	3362,4	3446,5	3531,7	3617,9	3705,3
p.	v	M ³ /ET	0,001	0.0010002	67,58	72,21	81,46	90,70	99,94	109,17	118,40	127,64	136,87	146,10	155,33	164,56	173,8	183,0	192,2	201,5
	s	в,Джи(вт ∙К)	-0,001	8,995	9,060	9,1837	9,4093	9,6122	1797,9	9,9674	10,1257	10,2739	10,4134	10,5454	10,6709	10,790	10,905	11,015	11,121	11,224
= 0,016ap	ų	кДж/кг	0'0	2,519,5	2538,1	2,575,5	2650,6	2726,2	2802,6	2879,7	2957,7	3036,7	3116,6	3197,5	3279,5	3362,4	3446,5	3531,7	3618,0	3705,3
.d	n	м ³ /ыт	0,00102	130,60	135,23	144,47	162,95	181,42	199,89	218,3	236,8	255,3	273,7	292,2	310,7	329,1	347,6	366,0	384,50	402,96
	t	°C	•	10	8	6	80	120	160	200	240	280	320	360	400	440	480	520	560	600

Приложение 2 Термодинамические свойства воды и перегретого пара
Продолжение прил.2

	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
	s	(Х·тя) \жЛуя/	-0,0001	0,1510	0,2963	0,4365	0,5721	8,4474	8,6512	8,8366	9,0072	9,1657	9,3139	9,4535	9,5855	9,7111	9,8309	9,9456	10,056	10,162	10,264
= 0,08 Gap	h	кДж/кг	0,0	42,0	83,9	125,7	167,4	2649,6	2725,6	2802,1	2879,4	2957,5	3036,5	3116,5	3197,4	3279,4	3362,4	3446,5	3531,6	3617,9	3705,2
p=	υ	м ³ /ыт	0,0010002	0,0010002	0,0010017	0,0010043	0,0010078	20,34	22,66	24,97	27,28	29,59	31,90	34,21	36,52	38,83	41,14	43,44	45,75	48,06	50,37
	S	к,Цж/ (кт·K)	-0,0001	0,1510	0,2963	0,4365	8,2819	8,5093	8,7130	8,8984	9,0689	9,2274	9,3756	9,5151	9,6472	9,7727	9,8925	10,007	10,117	10,223	10,326
= 0,07 6ap	h	кДж/кг	0,0	42,0	83,9	125,7	2574.1	2649,7	2725,7	2802,2	2879,5	2957,5	3036,5	3116,5	3197,4	3279,4	3362,4	3446,5	3531,6	3617,9	3705,3
p=	v	M ³ /KI	0,0010002	0,0010002	0,0010017	0,0010043	20,60	23,25	25,90	28,54	31,18	33,82	36,46	39,10	41,74	44,38	47,01	49,65	52,29	54,93	57,56
	s	к,Цж/ (кт-К)	-0,0001	0,1510	0,2963	0,4365	8,3537	8,5808	8,7843	8,9696	9,1402	9,2986	9,4468	9,5863	9,7184	9,8439	9,9637	10,078	10,188	10,295	10,397
: 0,06 6ap	h	кДж/кг	0,0	42,0	83,9	125,7	2574,3	2649,9	2725,8	2802,3	2879,5	2957,6	3036,6	3116,5	3197,4	3279,4	3362,4	3446,5	3531,7	3617,9	3705,3
= d	v	73/87	0,0010002	0,0010002	0,0010017	0,0010043	24,04	27,13	30,22	33,30	36,38	39,46	42,54	45,62	48,70	51,77	54,85	57,93	61,00	64,08	67,16
	S	(X⊡x) /#£∏%	-0,0001	0,1510	0,2963	0,4365	8,4385	8,6652	8,8687	9,0539	9,2244	9,3828	9,5310	9,6705	9,8025	9,9280	10,048	10,162	10,273	10,379	10,481
= 0,05 6ap	h	кДж/кг	0,0	42,0	83,9	126,7	2574,6	2650,0	2725,9	2802,3	2,879,5	2957,6	3036,6	3116,5	3197,5	3279,4	3362,4	3446,5	3531,7	3617,9	3705,3
=d	v	78/87	0,0010002	0,0010002	0,0010017	0,0010043	28,86	32,57	36,27	39,97	43,66	47,36	51,05	54,74	58,44	62,13	65,82	69,51	73,21	76,90	80,59
	t	°	•	9	20	30	40	80	120	160	200	240	280	320	360	400	440	480	520	560	600

	_		_	_	_		_	_		_	_	_		_	_	_	_	_			_
	s	кДж/ (кт-K)	1000'0-	0,2963	0,5721	0,7035	0,8310	7,8301	8,0371	8,2241	8,3956	8,5545	8,7031	8,8428	8,9750	9,1007	9,2205	9,3353	9,4455	9,5516	9,6541
: 0,30 6ap	ų	кДж/кг	0'0	83,9	167,5	209.3	251,1	2646,3	2723,5	2800,7	2878,4	2956,7	3035,9	3115,9	3197,0	3279,0	3362,1	3446,2	3531,4	3617,7	3705,1
đ	n	M ³ /str	0,0010002	0,0010017	0,0010078	0,0010121	0,0010171	5,402	6,027	6,649	7,268	7,885	8,502	9,119	9,735	10,351	10,967	11,583	12,199	12,81	13,43
	s	кДж/ (кт-K)	-0,0001	0,2963	0.5721	0,7035	0,8310	8,0205	8,2261	8,4124	8,5834	8,7422	8,8906	9,0302	9,1624	9,2880	9,4078	9,5225	9,6327	9,7388	9,8413
= 0,20 6ap	ų	кДж/кг	0'0	83,9	167.5	209,3	251,1	2647,8	2724,4	2801,3	2878,8	2957,0	3036,1	3116,2	3197,1	3279,2	3362,2	3446,3	3531,5	3617,8	3705,1
ď	n	${\rm M}^3/{\rm K}\Gamma$	0,0010002	0,0010017	0,0010078	0,0010121	0,0010171	8,119	9,052	9,980	10,907	11,832	12,757	13,681	14,605	15,529	16,45	17,38	18,30	19,22	20,15
	s	кДж/ (кг-K)	-0,0001	0,2963	0,5721	8,1752	8,2331	8,3437	8,5479	8,7334	8,9041	9,0626	9,2109	9,3504	9,4825	9,6081	9,7279	9,8426	9,9527	10,059	10,161
= 0,10 6ap	ų	ष्ट्र∏,क/क्षा	0'0	83,9	167,4	2592,3	2611,3	2649,3	2725,4	2802,0	2879,3	2957,4	3036,5	3116,4	3197,4	3279,4	3362,4	3446,4	3531,6	3617,9	3705,2
-d	n	M ³ /RT	0,0010002	0,0010017	0,0010078	14,87	15,34	16,27	18,12	19,98	21,82	23,67	25,52	27,37	29,22	31,06	32,91	34,76	36,60	38,45	40,29
	s	кДж/ (ат-K)	-0,0001	0,2963	0,5721	8,2243	8,2821	8,3927	8,5967	8,7822	8,9528	9,1113	9,2595	9,3991	9,5312	9,6567	9,7765	9,8912	10,001	10,107	10,210
= 0,09 6ap	ų	кДж/кг	0,0	83,9	167,4	2592,6	2611,5	2649,4	2725,5	2802,1	2879,4	2957,5	3036,5	3116,4	3197,4	3279,4	3362,4	3446,5	3531,6	3617,9	3705,2
-d	n	m ³ /ar	0,0010002	0,0010017	0,0010078	16,53	17,05	18,08	20,14	22,20	24,25	26,30	28,36	30,41	32,46	34,51	36,57	38,62	40,67	42,72	44,77
	t	°	0	20	4	20	99	80	120	160	200	240	280	320	360	400	440	480	520	560	600

Продолжение прил.2

	s	кДж/ (кг·K)	-0,0001	0,1510	0,4365	0,9548	1,0752	7,4813	7,6386	7,8286	8,0017	8.1615	8,3106	8,4508	8,5832	8,7090	8,8290	8,9438	9,0541	9,1603	9,2628
= 0,70 6ap	ų	кДж/кг	0,0	42,1	125,7	293,0	334,9	2660,3	27197	2798,2	2876,6	2955,4	3034,8	3115,1	3196,3	3278,4	3361,6	3445,8	3531,0	3617,3	3704,8
p=	а	78/87	0,0010002	0,0010002	0,0010043	0,0010228	0,0010292	2,366	2,571	2,841	3,108	3,374	3,640	3,905	4,170	4,434	4,698	4,962	5,227	5,491	5,755
	S	кДж/ (кг·К)	-0,0001	0,1510	0,4365	0,9548	1,0752	7,5554	7,7116	7,9009	8,0735	8,2332	8,3822	8,5222	8,6545	8,7803	8,9003	9,0151	9,1254	9,2315	9,3340
= 0,60 6ap	ų	na/ne/∐∕a	0,0	42,0	125,7	293,0	334,9	2661,7	2720,7	2798,8	2877,0	2955,7	3035,1	3115,3	3196,5	3278,6	3361,7	3445,9	3531,1	3617,4	3704,8
ď	а	™3/K	0,0010002	0,0010002	0,0010043	0,0010228	0,0010292	2,765	3,003	3,317	3,628	3,938	4,248	4,557	4,865	5,174	5,482	5,790	6,098	6,406	6,714
	S	кДж/ (жг∙К)	-0,0001	0,1510	0,4365	0,9548	1,0752	7.6425	T797,T	7,9862	8,1584	8,3178	8,4667	8,6066	8,7389	8,8646	8,9845	9,0993	9,2096	9,3157	9,4182
= 0,50 6ap	ų	кДж/кг	0,0	42,0	125,7	293,0	334,9	2663,0	2721,7	2,799,5	2877,5	2956,1	3035,4	3115,5	3196,6	3278,7	3361,9	3446,0	3531,2	3617,5	3704,9
⁼ d	а	ж ³ /ыт	0,0010002	0,0010002	0,0010043	0,0010228	0,0010292	3,324	3,608	3,983	4,356	4,728	5,099	5,469	5,839	6,209	6,579	6,949	7,318	7,688	8,057
	s	(X⊡x) \articlex	-0,0001	0,1510	0,4365	0,9548	7,6940	7,7485	7,9025	8,0903	8,2621	8,4213	8,5700	8,7098	8,8421	8,9678	9,0877	9,2024	9,3127	9,4188	9,5212
= 0,40 6ar	ų	кДж/кг	0,0	42,0	125,7	293,0	2644,9	2664,4	2722,6	2800,1	2877,9	2956,4	3035,6	3115,8	3196,8	3258,9	3362,0	3446,1	3531,3	3617,6	3705,0
=d	п	м ³ /вт	0,0010002	0,0010002	0,0010043	0,0010228	4,044	4,162	4,515	4,983	5,448	5,912	6,375	6,838	7,300	7,763	8,225	8,687	9,149	9,610	10,07
	t	°c	•	9	30	20	80	8	120	160	200	240	280	320	360	400	440	480	520	560	600

	s	кДж/ (кт·К)	-0,0001	0,1510	0,4364	0,5720	1,1924	1,4184	1,5276	7,3285	7,5073	7,6703	7,8213	7,9626	8,0958	8,2223	8,3427	8,4578	8,5683	8,6748	
= 2,00 6ap	ų	кДж/кг	0,2	42,2	125,8	167,6	377,0	461,4	503,7	2789,5	2870,4	2950,8	3031,2	3112,2	3193,8	3276,4	3359,8	3444,3	3529,7	3616,2	
, d	а	м3/кт	0,0010001	0,0010002	0,0010042	0,0010077	0,0010361	0,0010518	0,0010606	0,9842	1,080	1,175	1,269	1,363	1,456	1,549	1,642	1,735	1,828	1,920	
	s	к,Дж/ (кг°К)	-0,0001	0,1510	0,4365	0,5721	1,1925	7,4164	7,4681	7,6605	7,8348	7,9954	8,1449	8,2853	8,4179	8,5439	8,6640	8,7789	8,8892	8,9954	
= 1,00 6ap	ų	кДж/кг	0,0	42,1	125,8	167,5	377,0	2696,7	2716,8	2796.2	2875,2	2954,3	3034,0	3114,4	3195,7	3278,0	3361,2	3445,4	3530,7	3617,1	
đ	а	м3/ыт	0,0010002	0,0010002	0,0010043	0,0010078	0,0010361	1,745	1,793	1,984	2,172	2,359	2,546	2,732	2,917	3,103	3,288	3,473	3,658	3,843	
	s	к,Дж/ (кг°К)	-0,0001	0,1510	0,4365	0,5721	1.1925	7,4673	7,5187	7,7103	7,8842	8,0445	8,1939	8,3342	8,4668	8,5927	8,7127	8,8276	8,9379	9,0441	
= 0,90 6ap	ų	кДж/кг	0,0	42,1	125,7	167,5	377,0	2697,8	2717,8	2796,9	2875,6	2954,7	3034,3	3114,7	3195,9	3278,1	3361,3	3445,6	3530,8	3617,2	
p=	а	m3/Kr	0,0010002	0,0010002	0,0010043	0,0010078	0,0010361	1,942	1,995	2,206	2,415	2,623	2,829	3,036	3,242	3,448	3,653	3,859	4,065	4,270	
	s	к,Щж/ (кт К)	-0,0001	0,1510	0,4365	0,5721	1,1925	7,5239	7,5750	7,7658	7,9393	8,0994	8,2486	8,3888	8,5213	8,6472	8,7672	8,8821	8,9924	9,0986	
= 0,80 6ap	ų	кДж/кг	0,0	42,1	125,7	167,5	376,9	2698,9	2718,8	2797,5	2876,1	2955,0	3034,6	3114,9	3196,1	3278,3	3361,5	3445,7	3530,9	3617,3	
p=	а	m 3/ar	0,0010002	0,0010002	0,0010043	0,0010078	0,0010361	2,187	2,247	2,484	2,718	2,952	3,184	3,416	3,648	3,879	4,111	4,342	4,573	4,804	
	t	ç	•	2	30	6	8	110	120	160	200	240	280	320	360	400	440	480	520	260	

Продолжение прил.2

	_		_	_			_	_	_	_	_		_	_	_	_	_	_	_	_	
	S	(X-13) /≋/]/¥	-0,0001	0,5717	1,6336	1,7383	1,8410	1,9420	2,0414	6,5854	6,6940	6,8826	7,0475	7,1971	7,3356	7,4606	7,5890	7.7061	7,7627	7,9256	8,0545
= 10 6ap	\boldsymbol{h}	кДж/кг	1,0	168,3	546,8	589,5	632,5	675,7	719,2	2777,3	2827,5	2920,5	3008,3	3094,0	3178,9	3264,0	3349,3	3435,1	3478,3	3609,1	3697,4
h	а	м ³ /ыт	7666000,0	0,0010074	0,0010696	0,0010796	0,0010904	0,0011019	0,0011143	0,1944	0,2059	0,2275	0,2480	0,2678	0,2873	0,3066	0,3256	0,3446	0,3540	0,3823	0,4010
	S	к,Дж/ (кг∙К)	-0,0001	0,5719	1,6341	1,7388	1,8416	6,8653	6,9169	6,9664	7,0603	7,2314	7,3871	7,5314	7,6664	7,7944	7,9157	8,0316	8,0877	8,2495	8,3525
= 5,00 6ap	ų	na/ne/∐∕a	0,5	167,9	546,5	589,2	632,2	2767,4	2789,9	2812,1	2855,4	2939,9	3022,8	3105,5	3183,3	3271,8	3355,9	3440,8	3483,6	3613,5	3701,4
.d	v	м ³ /кг	0,0010000	0,0010076	0,0010699	0,001080	0,001090	0,3836	0,3942	0,4046	0,4249	0,4646	0,5034	0,5416	0,5796	0,6172	0,6548	0,6922	0,7109	0,7668	0,8040
	S	к,Щж/ (кг·К)	0,0001	0,5720	1,6342	1,7389	6,9308	6,9825	7,0322	7,0802	7,1715	7,3398	7,4939	7,6372	7,7716	7,8990	8,0201	8,1357	8,1917	8,3533	8,4561
= 4,00 6ap	ų	кДж/кг	0,4	167,8	546,4	589,1	2752,9	2775,0	2796,8	2818,3	2860,6	2943,5	3025,7	3107,7	3190,1	3273,3	3357,2	3442,0	3484,7	3614,4	3702,2
=d	а	м ³ /кг	0,0010000	0,0010076	0,0010699	0,0010800	0,4708	0,4839	0,4967	0,5094	0,5343	0,5831	0,6311	0,6785	00,7257	0,7726	0,8193	0,8660	0,8893	0,9590	1,0055
	S	(N-18) ∖mc∏n	-0,0001	0,5720	1,6343	7,0274	7,0790	7,1287	7,1767	7,2232	7,3123	7,4780	7,6305	7,7727	7,9065	8,0335	8,1542	8,2696	8,3255	8,4868	8,5896
= 3,00 6aj	ų	इ.Д.≋/अ	0,3	167,7	546,3	2739,6	2761,2	2782,4	2803,4	2824,3	2865,6	2947,2	3028,5	3110,0	3192,0	3274,9	3358,5	3443,1	3485,8	3615,3	3702,9
-d	а	м ³ /ыт	0,0010001	0,0010077	0,0010700	0,6170	0,6340	0,6508	0,6674	0,6838	0,7164	0,7805	0,8438	0,9067	0,9692	1,031	1,094	1,156	1,218	1,279	1,341
	t	°	•	6	130	140	150	160	170	180	200	240	280	320	360	400	440	480	520	560	009

			_						_	_											
	s	KT™) (Kr°K)	0,0001	0,5709	1,5250	2,2330	2,4228	2,5166	2,6098	6,2245	6,4477	6,6262	6,7818	6,9231	7,0535	7,1758	7,2345	7,2633	7,2918	7,4024	7,5084
= 30 6ap	ų	ĸДж∕ar	3,0	170,1	505,7	808,3	898,1	943,9	990,3	2823,0	2941,8	3044,0	3139,3	3231,6	3321,9	3411,6	3456,4	3478,8	3501,2	3591,1	3681.5
d	а	M³/kur	0,0009987	0,0010065	0,0010590	0,0011399	0,0011714	0,0011891	0,0012084	0,06818	0,07714	0,08500	0,09232	0,09933	0,1061	0,1128	0,1161	0,1178	0,1194	0,1259	0,1324
	S	ĸДж/ (ser-K)	0,00004	0,5711	1,5255	2,2338	2,4237	2,5175	6,2927	6,3529	6,5573	6,7273	6,8781	7,0165	7,1449	7,2659	7,3240	7,3526	7,3808	7,4906	7,5960
= 25 6ap	ų	ष्ट्र∏,क्र/धा	2,5	169,7	505,3	808,1	898,0	943,7	2820,4	2851,0	2959,8	3057,1	3149,6	3239,9	3328,9	3417,5	3461,9	3484,1	3506,4	3595,7	3685,5
p	а	$M^3/K\Gamma$	0,0009990	0,0010067	0,0010593	0,0011403	0,0011719	0,0011897	0,08164	0,08439	0,09434	0,10334	0,1119	0,1201	0,1281	0,1360	0,1399	0,1419	0,1438	0,1516	0,1592
	S	ĸДж/ (scr·K)	0,0000	0,5713	1,5260	2,2345	2,4245	6,3842	6,4416	6,4953	6,6842	6,8466	6,9929	7,1285	7,2550	7,3747	7,4323	7,4606	7,4886	7,5977	7,7024
= 20 6ap	ų	кДж/кг	2,0	169,2	505,0	807,9	897,8	2820,4	2849,0	2876,3	2976,9	3069,8	3159,5	3248,1	3335,8	3423,5	3467,4	3489,5	3511,5	3600,2	3689.5
đ	а	m³/kr	0,0009992	0,0010069	0,0010596	0,0011408	0,0011725	0,1021	0,1053	0,1084	0,1200	0,1308	0,1411	0,1512	0,1610	0,1708	0,1756	0,1780	0,1804	0,1900	0,1995
	s	κ,∐,æ/ (arr·K)	0,0000	0,5715	1,5264	2,235	6,5099	6,5639	6,6150	6,6635	6,8394	6,9949	71372	7,2701	7,3949	7,5132	7,5703	7,5984	7,6262	7,7345	7,8386
= 15 6ap	ų	кДлас/вс	ζl	168,8	504,6	807,6	2822,9	2849,2	2874,7	2899,3	2993,0	3082,1	3169,3	3256,1	3342,6	3429,3	3472,9	3494,7	3516,6	3604,6	3693.5
đ	а	м ³ /кг	2666000,0	0,0010071	0,0010599	0,001141	0,1366	0,1406	0,1445	0,1483	0,1627	0,1765	0,1899	0.2030	0,2159	02287	0,2351	0,2383	0,2414	0,2541	0.2667
	t	°C	•	6	120	190	210	220	230	240	280	320	360	400	440	480	200	510	520	560	600

0.5702 .0720 1.5232 0.0002 0.1505 1.9373 2.3253 2.6985 2.7911 6.3147 2.8842 NL X N in the second 6.0184 7.2586 6.4939 6.6486 6.8528 7,1501 7.0361 6,787, ŝ p = 50 6ap1085.8 1135.0 1037.8 2986.2 स्]] जर/हर 71.9 678,0 \$53.8 338.8 3095.9 3196,9 2818.4 46.9 507,1 340,4 3665. 5,1 3480. 3572,5 2 0.0012750 0.0009979 0.0010056 0.0010268 0.0010579 0.0012264 0.0012494 0,0010990 0.0011530 0.000997 0,04053 0.04811 0.07864 0,06220 N/N 0.05316 0.06434 0.07058 0.07464 05780 2 0.5704 1.5237 2.6996 0,1506 1.0723 1.9379 2,3260 2.7923 6.0370 6.3836 7.3107 N in the second 0.0002 6.1080 6,8438 0898 ,2029 5561 6.9083 6.7071 ŝ p = 45 6apR/IJac/RT 1037.8 1085.8 2845.3 4 506,7 677,8 \$53,6 3107,2 171,4 338.4 3205.8 3300,5 3485.5 3577,4 3669.4 46,4 2807. 3001. 3347.1 ÷, ~ 0.0010058 0,0010270 0.0010582 0.0012272 0.0012503 0.0009980 0.0009981 0.0010993 0.0011534 0.05430 0.08319 0.08760 0.04454 0.04641 0,07187 0.07872 0.05971 0.06473 0.06953 M / RT 2 .0726 2.7936 0,1506 0.5706 1.9385 2.3268 6,4573 (Rr B) 1.5242 2.7007 6.1995 7.3686 0.0002 6.1355 NT N 7,2614 6.6237 7713 5.9058 5.9694 ,1491 \$ p = 40.6apR.I.Jac/RC 1037,7 1085.8 2835.6 3016.2 2870.1 171,0 677,5 4 506,4 \$53,4 3490.8 45,9 118.2 3673. 4 0 338.1 3307,7 214,5 3353, 3582.0 ~ 0,0009984 0,0010060 0,0010273 0,0011540 0,0012280 0.0012512 0.0009982 0.0010584 0,0010997 0,08128 0,08890 0.05366 0.06200 0.07339 0,07869 0.09387 0.09879 0,06787 0.5174 M / RT 2 2.7018 0,1507 0.5708 1.0730 1.5244 1.9390 2.3276 6.1734 6.2369 6.2951 6.5374 7,4337 R is 0.0001 No. of the second secon 6982 ,8426 9749 ,0378 ,2157 ,3272 ŝ = 35 6ap 2861.6 2892.9 R.II.ac/RT 3030.3 170.5 506,0 677,2 \$53.2 2828.1 1037.7 496,0 3586.6 128,9 360,3 314,8 45,4 337.7 223,1 3677. 3,5 ~ ρ 0,0009986 0012288 0.0010063 0.0010275 0,0011545 0.0009985 0.0010587 0,0011001 0.05871 10198 0.07836 0,1076 0.06085 0.06287 0.07187 0.08451 0.09046 0.09338 0.1132 M /BT 2 2 99 200 540 250 260 270 320 360 ş 4 <u>8</u> 202 80 8 ç 0 2 ç

_	_																				
	s	к,Дж/ (кг°К)	0,0005	0,5686	1,5197	1,9326	2,3191	2,6899	2,9663	3,0600	3,1555	3,2539	5,746»	5,8341	6,0953	6,2891	6,4502	6,5927	6,7230	6,8444	6,9585
= 90 6ap	ų	кДж/кг	9,1	175,4	509,9	680,4	855,5	1038,3	1184,3	1235,6	1289,0	1344,9	2781,8	2833,5	2993,2	3119,7	3231,2	3335,7	3436,4	3535,0	3632,4
•	а	м ³ /ыт	0,0009958	0,0010038	0,0010556	0,0010961	0,0011490	0,0012202	0,0012940	0,0013249	0,0013604	0,0014022	0,02142	0,02268	0,02669	0,02993	0,03280	0,03546	0,03800	0,04044	0,04281
	s	к,Дж/ (кг∙К)	0,0004	0,5690	1,5206	1,9338	2,3207	2,6920	2,9691	3,0633	3,1594	5,7918	5,8771	5,9510	6,1849	6,3670	6,5218	6,6605	6,7881	6,9075	7,0201
= 80 6ap	ų	RUT MURIT	8,1	174,5	509,2	679,8	855,1	1038,2	1184,6	1236,2	1289,8	2785,4	2834,7	2878,1	3021,3	3140,1	3247,3	3349,0	3447,6	3544,6	3640,7
¢,	а	м ³ /кг	0,0009962	0,0010043	0,0010562	0,0010968	0,0011500	0,0012218	0,0012964	0,0013277	0,0013639	0,02425	0,02560	0,02682	0,03089	0,03431	0,03741	0,04031	0,04309	0,04578	0,04841
	s	кДж/ (кг·К)	0,0004	0,5694	1,5215	1,9350	2,3222	2,6941	2,9721	3,0667	5,8509	5,9322	6,0034	6,0672	6,2793	6,4511	6,6002	6,7352	6,8602	6,9778	7,0890
= 70 6ap	ų	кДж/кг	7,1	173,6	508,5	679,2	854,6	1038,0	1184,9	1236,7	2792,9	2839,2	2880,2	2917,8	3047,6	3159,7	3263,0	3361,9	3458,6	3554,1	3649,0
ď	а	м ³ /кг	7966000,0	0,0010047	0,0010567	0,0010976	0,0011510	0,0012233	0,0012988	0,0013307	0,02801	0,02946	0,03078	0,03199	0,03623	0,03992	0,04332	0,04654	0,04964	0,05266	0,05561
	s	кДж/ (ar-K)	0,0003	0,5698	1,5224	1,9361	2,3237	2,6963	2,9751	5,9253	6,0016	6,0693	6,1306	6,1869	6,3811	6,5438	6,6876	6,8191	6,9417	7,0575	7,1673
= 60 6ap	ų	кДж/кг	6,1	172,7	507,8	6-78,6	854,2	1037,9	1185,2	2804,0	2846,5	2885,0	2920,4	2953,5	3072,4	3178,6	3278,3	3374,7	3469,5	3563,5	3657,2
4	а	м ³ /ыт	0,0009972	0,0010051	0,0010573	0,0010983	0,0011519	0,0012249	0,0013013	0,03317	0,03473	0,03616	0,03750	0,03876	0,04331	0,04738	0,05119	0,05484	0,05837	0,06182	0,06521
	t	°c	•	6	120	160	200	240	270	280	290	300	310	320	360	400	440	480	520	560	009

Продолжение прил.2

	s	кДж/ (кт-К)	0,0006	0,5670	1,2969	1,7261	2,313	2,682	3,141	3,3356	3,4400	3,5532	5,5589	5,9569	6,2057	6,2890	6,5088	6,6386	6,7590
= 130 6ap	h	кДж/кг	13,1	178,9	428,8	597,4	857,2	1038,9	1286,1	1397,8	1459,2	1526,9	2738,8	2991,7	3162,6	3222,8	3390,3	3495,8	3598,4
p	v	м ³ /ыт	0,0009938	0,0010021	0,0010371	0,0010721	0,0011451	0,0012144	0,0013472	0,0014310	0,0014869	0,0015600	0,01402	0,01834	0,02139	0,02247	0,02544	0,02727	0,0290
	s	кДж/ (кт-K)	0,0006	0,5674	1,2977	1,7271	2,315	2,684	3,144	3,3407	3,4464	5,5643	5,6725	6,0259	6,2622	6,3427	6,5571	6,6847	6,8034
= 120 6ap	h	क्रД,क्र∕ हत	12,1	178,1	428,0	596,7	856,8	1038,8	1286,8	1399,3	1461,5	2727,6	2793,4	3018,1	3180,4	3238,6	3402,1	3505,7	3607,0
-d	v	${\rm m}^3/{\rm Kr}$	0,0009943	0,0010026	0,0010376	0,0010727	0011461 %	0,0012158	0,0013504	0,0014362	0,0014941	0,01501	0,01620	0,02040	0,02354	0,02467	0,02780	0,02974	0,0316
	S	кДж/ (кт-K)	0,0006	0,5678	1,2984	1,7281	2,3161	2,6857	3,1480	3,3459	5,5782	5,6880	5,7776	6,0963	6,3214	6,3992	6,6085	6,7340	6,8511
= 110 6ap	h	кДж∕кг	11,1	177,2	427,2	596,1	856,4	1038,6	1287,5	1400,9	2720,3	2785,9	2840,4	3043,2	3197,8	3254,1	3413,7	3515,6	3615,5
-d	v	м ³ /ыт	0,0009948	0,0010030	0,0010381	0,0010733	0,0011470	0,0012173	0,0013536	0,0014416	0,01625	0,01754	0,01864	0,02281	0,02607	0,02726	0,03058	0,03266	0,0347
	s	(X⊡x) /#/]/ж	0,0005	0,5682	1,2992	1,7291	2,3176	2,6878	3,1517	3,3513	5,7120	5,8014	5,8782	6,1689	6,3837	6,4591	6,6635	6,7869	6,9025
= 100 6ap	ų	кДж/кг	10,1	176,3	426,5	595,4	855,9	1038	1288	1402,6	2782,0	2835,4	2882,1	3067,1	3214,8	3269,3	3425,1	3525,4	3624,0
ď	v	<mark>3</mark> /кг	0,0009953	0,0010034	0,0010386	0,0010739	0,0011480	0,0012188	0,0013570	0,0014472	0,01924	0,02042	0,02147	0,02568	0,02910	0,03036	0,03392	0,03616	0,0383
	t	°c	•	4	100	140	200	240	290	310	320	330	340	390	440	460	520	560	600

Окончание прил.2

\square		20	8	26	ŝ	4	27	73	36		22	8 23	282	8 2 8 2	52 86 84 36	238 25 25	2 3 2 8 2 2 5	52 58 52 58 52 58 52 58	25 25 25 25 25 25 25 25 25 25 21	55 84 75 75 75 75 75 75 75 75 75 75 75 75 75	52 666 75 76 111 76
e.	5		0,0	0,29	0,56	1,06	1,51	2,30	2.67		3,03	3,41	3,03 3,41 3522	3,03 3,41 3,52 3,63	3,03 3,41 3,522 3,633 3,633	3,03 3,41 3,52 3,53 3,53 5,34 5,34	3,03 3,41 3,52 3,77 5,34 5,75	3,03 3,410 3,77 5,73 5,73 5,99	3,03 3,41 3,52 3,77 5,34 6,18	3,410 3,410 3,410 3,410 3,410 5,73 5,75 5,75 5,75 6,18 6,18	3,03 3,410 3,522 3,633 3,633 5,75 5,75 5,75 5,75 5,75 5,75 5,75 5,
= 170 6a	ч	scД3sc/so	17,1	99,7	182,4	348,4	515,6	859,0	1039,7		1232,4	1232,4 1451,2	1232,4 1451,2 1514,6	1232,4 1451,2 1514,6 1585,9	1232,4 1451,2 1514,6 1585,9 1585,9 1668,7	1232,4 1451,2 1514,6 1585,9 1668,7 1668,7 2653,6	1232,4 1451,2 1514,6 1585,9 1585,9 1668,7 2653,6 2653,6 2920,2	1232,4 1451,2 1514,6 1585,9 1585,9 1668,7 2653,6 2653,6 2920,2 2920,2 2920,2 2920,2	1232,4 1451,2 1514,6 1585,9 1585,9 1668,7 2653,6 2653,6 2653,6 2920,2 3085,7 305,7 3085,7 305	1232,4 1451,2 1514,6 1514,6 1585,9 1585,9 1585,9 2653,6 2653,6 2920,2 3085,7 3085,7 3341,8	1232,4 1451,2 1514,6 1585,9 1585,9 1585,3 6 2653,6 2920,2 2920,2 3085,7 3085,7 3341,8 3341,8 3455,1 3455,1
-d	v	M ³ /ar	0,0009919	0,0009942	0,0010004	0,0010212	0,0010512	0,0011414	0,0012088		0,0013041	0,0013041 0,0014615	0,0013041 0,0014615 0,0015229	0,0013041 0,0014615 0,0015229 0,0016042	0,0013041 0,0014615 0,0015229 0,0016042 0,001728	0,0013041 0,0014615 0,0015229 0,0016042 0,001728 0,009616	0,0013041 0,0014615 0,0015229 0,0016042 0,0016042 0,001728 0,009616	0,0013041 0,0014615 0,0015229 0,0016042 0,0016042 0,001728 0,0009616 0,01303 0,01303	0,0013041 0,0014615 0,0015229 0,0016042 0,001728 0,001728 0,01303 0,01303 0,01527 0,01712	0,0013041 0,0015229 0,00152229 0,001528 0,001728 0,001728 0,01303 0,01527 0,01527 0,011712	0,0013041 0,0015229 0,0015222 0,001528 0,001728 0,001728 0,01303 0,01527 0,01527 0,011712 0,011712
	5	кДж/ (кт-K)	0,0008	0,2928	0,5659	1,0648	1,5136	2,3087	2,6756		3,0381	3,03 8 1 3,4222	3,0381 3,4222 3,5296	3,0381 3,4222 3,5296 3,6484	3,0381 3,4222 3,5296 <u>3,6484</u> 5,3071	3,0381 3,4222 3,5296 3,6484 5,3071 5,4653	3,0381 3,4222 3,5296 3,6484 5,6484 5,4653 5,4653 5,4653	3,0381 3,4222 3,5296 3,5484 5,3071 5,4653 5,8215 5,8215	3,0381 3,4222 3,5296 3,5296 5,3071 5,4653 5,4653 5,4653 5,4653 5,8215 6,0470 6,0470	3,0381 3,4222 3,5296 3,5296 3,6484 5,484 5,4853 5,4853 5,8215 6,0470 6,2250 6,3777	3,0381 3,4222 3,5296 3,5296 5,4844 5,4853 5,4853 5,4853 5,4853 5,4853 6,0470 6,0470 6,2250 6,3777 6,5146
= 160 6ap	ч	кДж/кг	16,1	98,8	181,6	347,6	514,9	858,6	1039,5		1232,8	1232,8 1453,0	1232,8 1453,0 1517,3	1232,8 1453,0 1517,3 1589,6	1232,8 1453,0 1517,3 1589,6 2618,5	1232,8 1453,0 1517,3 1589,6 2618,5 2618,5 2717,8	1232,8 1453,0 1517,3 1517,3 1517,3 1519,6 2618,5 2717,8 2949,7 2949,7	1232,8 1453,0 1517,3 1589,6 1589,6 2618,5 2618,5 2717,8 2949,7 2949,7 3105,8	1232,8 1453,0 1517,3 1517,3 1589,6 2618,5 2618,5 2949,7 2949,7 2949,7 3105,8 3105,8 3236,2	1232,8 1453,0 1517,3 1589,6 2618,5 2717,8 2717,8 2949,7 3105,8 3324,2 3354,2 3354,2	1232,8 1453,0 1517,3 1517,3 1589,6 2618,5 2618,5 2717,8 2949,7 2949,7 23354,2 33254,2 3354,2 3354,2 3354,2 3465,4
p:	v	${\rm M}^3/{\rm K}\Gamma$	0,0009924	0,0009946	0,0010008	0,0010217	0,0010518	0,0011423	0,0012101		0,0013065	0,0013065 0,0014674	0,0013065 0,0014674 0,0015312	0,0013065 0,0014674 0,0015312 0,0016175	0,0013065 0,0014674 0,0015312 0,0016175 0,009782	0,0013065 0,0014674 0,0015312 0,0016175 0,0016175 0,0016175 0,01107	0,0013065 0,0014674 0,0015312 0,0016175 0,0016175 0,0010782 0,01107 0,01107	0,0013065 0,0015312 0,0016175 0,0016175 0,009782 0,01107 0,01427 0,01652	0,0013065 0,0014674 0,0016175 0,0016175 0,009782 0,001407 0,011427 0,011427 0,011652 0,011842	0,0013065 0,0014674 0,0015312 0,009782 0,01107 0,011427 0,011427 0,011427 0,011842 0,01842	0,0013065 0,0014674 0,0015312 0,0016175 0,0010782 0,01107 0,011427 0,011427 0,011427 0,011427 0,011427 0,011427 0,011427
	5	кДж/ (кт-K)	0,0007	0,2930	0,5662	1,0655	1,5144	2,3102	2,6776		3,0411	3,0411 3,4279	3,0411 3,4279 3,5371	3,0411 3,4279 3,5371 3,6592	3,0411 3,4279 3,5371 3,6592 5,4450	3,0411 3,4279 3,5371 3,6592 5,4450 5,5685	3,0411 3,4279 3,5371 3,5592 5,5685 5,5685 5,8851	3,0411 3,4279 3,5371 3,5592 5,5685 5,5685 5,5685 5,5851 6,0984	3,0411 3,4279 3,5371 3,5592 5,4450 5,4450 5,5685 5,5685 5,5685 5,5685 5,5685 5,5685 5,5685 5,5685	3,0411 3,5371 3,5371 3,5592 5,4450 5,5685 5,5685 5,5685 5,5685 5,5685 6,0984 6,2704 6,4194	3,0411 3,4279 3,5371 3,5371 5,5685 5,5685 5,5685 5,5685 6,0984 6,2704 6,4194 6,5539
= 150 Gap	Ч	s,Дж/кг	15,1	97,9	180,7	346,8	514,2	858,1	1039,3		1233,1	1233,1 1455,0	1233,1 1455,0 1520,3	1233,1 1455,0 1520,3 1594,6	1233,1 1455,0 1520,3 1520,3 1594,6 2693,8	1233,1 1455,0 1520,3 1594,6 1594,6 2693,8 2771,3	1233,1 1455,0 1520,3 1594,6 2693,8 2771,3 2977,6	1233,1 1455,0 1520,3 1520,3 1594,6 25771,3 22771,3 22777,6 3125,2	1233,1 1455,0 1520,3 1520,3 1524,6 2693,8 2693,8 2977,6 3125,2 3125,2 3251,2	1233,1 1455,0 1520,3 1594,6 2693,8 2771,3 2771,3 2977,6 3125,2 3251,2 3366,4	1233,1 1455,0 1520,3 1594,6 2693,8 2771,3 2771,3 2977,6 3125,2 3366,4 3475,6 3475,6
ъ.	Λ	m ³ /RT	0,0009928	0,0009950	0,0010013	0,001021	0,0010523	0,0011432	0,0012115		0,0013090	0,0013090 0,0014736	0,0013090 0,0014736 0,0015402	0,0013090 0,0014736 0,0015402 0,0016323	0,0013090 0,0014736 0,0015402 0,0016323 0,01148	0,0013090 0,0014736 0,0015402 0,0016323 0,0016323 0,01148 0,01258	0,0013090 0,0014736 0,0015402 0,0016323 0,01148 0,01258 0,01258	0,0013090 0,0014736 0,0015402 0,0016323 0,01148 0,01258 0,01258	0,0013090 0,0014736 0,0015402 0,0016323 0,0016323 0,01148 0,01258 0,01258 0,01258	0,0013090 0,00154736 0,0015402 0,0016323 0,01148 0,011566 0,01258 0,01258 0,01258	0,0013090 0,00154736 0,0015402 0,0016323 0,01148 0,011566 0,01258 0,01258 0,01258 0,01258 0,012332
	s	K,II,ar / (ar · K)	0,0007	0,2933	0,5666	1,0661	1,5153	2,3117	2,6796		3,0441	3,0441 3,4338	3,0441 3,4338 3,5449	3,0441 3,4338 3,5449 5,4297	3,0441 3,4338 3,5449 5,4297 5,5606	3,0441 3,4338 3,5449 5,5606 5,5606	3,0441 3,4338 3,5449 5,4297 5,5606 5,5606 5,5624 5,9488	3,0441 3,4338 3,4338 5,449 5,449 5,5406 5,5606 5,5606 5,9488 6,1512	3,0441 3,4338 3,5449 5,4297 5,5406 5,5606 5,6624 5,9488 6,1512 6,1512	3,0441 3,4338 3,5449 5,5606 5,5624 5,5624 5,5488 6,1512 6,1512 6,3174 6,4630	3,0441 3,4338 3,5449 5,5406 5,5666 5,56624 6,1512 6,1512 6,1512 6,3174 6,4630 6,5951
= 140 Gap	Ч	кДж/кг	14,1	97,0	179,8	346,0	513,5	857,7	1039,1		1233,5	1233,5 1457,0	1233,5 1457,0 1523,5	1233,5 1457,0 1523,5 2672,6	1233,5 1457,0 1523,5 2672,6 2753,5	1233,5 1457,0 1523,5 2672,6 2753,5 2817,4	1233,5 1457,0 1523,5 2672,6 2672,6 2753,5 27	1233,5 1457,0 1523,5 2672,6 2753,5 2753,5 2817,4 2817,4 3004,0 3144,2	1233,5 1457,0 1523,5 2672,6 2672,6 2817,4 3004,0 3144,2 3144,2 3144,2 3265,9	1233,5 1457,0 1457,0 1523,5 2672,6 2672,6 2817,4 3004,0 3144,2 3144,2 3144,2 3378,4	1233,5 1457,0 1457,0 1523,5 2672,6 2817,4 3144,2 3144,2 3144,2 3144,2 3378,4 3378,4 3385,9 3378,4
= d	Λ	M ³ /ar	0,0009933	0,0009955	0,0010017	0,0010226	0,0010529	0,0011442	0,0012129	-	0,0013115	0,0013115 0,0014801	0,0013115 0,0014801 0,0015497	0,0013115 0,0014801 0,0015497 0,01201	0,0013115 0,0014801 0,0015497 0,01201 0,01323	0,0013115 0,0014801 0,0015497 0,01201 0,01323 0,01323	0,0013115 0,0014801 0,0015497 0,01201 0,01223 0,01422 0,01422	0,0013115 0,0014801 0,0015497 0,01201 0,01223 0,01422 0,01422 0,01954	0,0013115 0,0014801 0,0015497 0,01201 0,01323 0,01323 0,01323 0,01954 0,01954	0,0013115 0,0014801 0,0015497 0,01201 0,01323 0,01323 0,011722 0,011722 0,01354 0,02157	0,0013115 0,0014801 0,0015497 0,011201 0,011323 0,011323 0,011722 0,011722 0,012515 0,022157
	t	°c	0	20	40	80 80	120	200	240	000	187	320	320 330	320 340 330 340	320 340 350 350 350	280 320 350 360 350	280 330 350 350 400	280 330 350 360 440	280 320 330 350 440 480	280 330 350 350 440 520	280 320 330 350 350 440 520 560

Приложение 3

Методика подбора профилей по «Атласу профилей МЭИ»

Обозначения профилей.

В «Атласе профилей МЭИ» все профили делятся на две группы:

- профили для неподвижных (сопловых) решёток;

- профили для вращающихся (рабочих) решёток.

Профили для неподвижных (сопловых, направляющих решёток) обозначаются буквой «С» (русская «эс»), а для вращающихся решёток – буквой «Р» (русская «эр»). Например: С-9012А или Р-3021А.

За буквой обозначения типа решётки стоят две пары чисел и буква:

С-9012А: $\alpha_1 = 90^0$ – угол входа потока на решетку;

 $\alpha_2 = 12^0$ – угол выхода из решетки;

А – символ, характеризующий область применения данного профиля в зависимости от скорости потока на входе.

P-3021А: $\beta_1 = 30^0$ – угол входа потока на решетку;

 $\beta_2 = 21^0 -$ угол выхода из решетки;

A – символ, характеризующий область применения данного профиля в зависимости от скорости потока на входе.

Символ в конце обозначения профиля означает:

А- для дозвуковых скоростей

 $(M_{c1t}=c_{1t}/a_{1t}<0,8...0,9; M_{w2t}=w_{2t}/a_{2t}<0,8...0,9);$

Б - для околозвуковых скоростей

 $(0,8...0,9 \le M_{c1t} = c_{1t}/a_{1t} \le 1,1...1,2;$, $8...0,9 \le M_{w2t} = w_{2t}/a_{2t} \le 1,1///1,2);$

В - для сверхзвуковых скоростей

$$(M_{c1t}=c_{1t}/a_{1t}>1,2...1,4; M_{w2t}=w_{2t}/a_{2t}>1.2...1,4).$$

Основные задачи и принципы выбора профиля по атласу профилей.

В результате проведения расчёта ступени турбины по среднему диаметру конструктор получает все параметры, необходимые для выбора сопловой и рабочей решёток

Продолжение прил.3 профилей: углы α_0 и α_1 , число M_{c1t} – для сопловой решётки, и β_1 и β_2 , число M_{w2t} – для рабочей решётки.

Профиль сопловой и рабочей решётки выбирают, в первую очередь, ориентируясь на значение угла выхода потока α_1 и β_2 . Как известно, при дозвуковых скоростях углы выхода потока α_1 и β_2 практически равны эффективным углам $\alpha_{13\phi}$ =arcsin(a_1/t_1) и $\beta_{23\phi}$ = arcsin(a_2/t_2), а эффективные (геометрические) углы выхода решётки определяются по величине узкого сечения («горла») межлопаточного канала.

«Горло» межлопаточного канала определяет проходную площадь решётки, а, следовательно, и расход рабочего тела через ступень и её мощность. Поэтому, при выборе профиля, в первую очередь, обращают внимание на близость значений α_1 и β_2 , полученных из расчёта ступени, второй паре цифр в обозначении профиля.

Далее, выбранный профиль проверяют по близости углов входа потока α₀ и β₁, полученным из расчёта, первой паре цифр в обозначении профиля. Если разница этих значений невелика (менее 5-10 градусов), то выбирают тот профиль, у которого она минимальна. Это означает, что выбранный профиль в условиях проектируемой ступени будет работать с небольшими углами атаки на входе в решётку и, хотя его эффективность несколько уменьшится по сравнению с обтеканием профиля при нулевом угле атаки, выбор готового оправдан профиля «Атласа» ИЗ использованием унифицированных деталей ступени турбины.

> Определение угла установки решетки. $\alpha_{\rm y} = \alpha_{1 \ni \phi} - 16,0 \cdot (t_{\rm опт} - 0,75) + 23,1.$ $\beta_{\rm y} = \beta_{2 \ni \phi} - 12,8 \cdot (t_{\rm опт} - 0,65) + 58,01.$

где: $\alpha_{1 \ni \phi}, \beta_{2 \ni \phi} - \ni \phi \phi$ ективный угол выхода решётки;

$$\alpha_{1 \ni \phi} = \alpha_1 - 0.7.$$

 $\beta_{2 \ni \phi} = \beta_2 - 0.7.$

Продолжение прил.3

*t*_{опт} – оптимальный шаг решетки.

Пример

Из таблицы профилей для решетки C-9012Б

$$\alpha_{1 \ni \phi} = \alpha_1 - 0.7 = 12 - 0.7 = 11.3^{\circ}.$$

 $\bar{t} = 0.72 \dots 0.85. t_{ont} = \frac{0.72 + 0.87}{4} = 0.8.$
 $\alpha_y = \alpha_{1 \ni \phi} - 16.0 \cdot (t_{ont} - 0.75) + 23.1 =$
 $= 11.3 - 16.0 \cdot (0.8 - 0.75) + 23.1 = 37^{\circ}.$

$$P-2314A.$$

$$\beta_{2\ni\varphi} = \beta_2 - 0.7 = 14 - 0.7 = 13,3^0.$$

$$\bar{t} = 0.60 \dots 0.75. \ t_{\text{опт}} = \frac{0.60 + 0.75}{4} = 0.675.$$

$$\beta_y = \beta_{2\ni\varphi} - 12.8 \cdot (t_{\text{опт}} - 0.65) + 58,01 =$$

$$= 13.3 - 12.8 \cdot (0.675 - 0.65) + 58,01 = 71^0.$$

Таблица. Профили решеток МЭИ

Обозна- чение профиля	α ₁ , β ₂ , град.	α ₀ , β ₁ , град.	ī	Мопт	<i>b</i> , см	<i>f</i> , см ²	$J_{ m min}, \ { m cm}^4$	$W_{\min},$ cm ³
1	2	3	4	5	6	7	8	9
C-9009A	8-11	70-120	0,72-0,85	До 0,90	6,06	3,45	0,416	0,471
C-9012A	10-14	70-120	0,72-0,87	До 0,85	6,25	4,09	0,591	0,575
C-9015A	13-17	70-120	0,70-0,85	До 0,85	5,15	3,3	0,36	0,45
C-9018A	16-20	70-120	0,70-0,80	До 0,85	4,71	2,72	0,243	0,333
C-9022A	20-24	70-120	0,70-0,80	До 0,90	4,5	2,35	0,167	0,265
C-9027A	24-30	70-120	0,65-0,75	До 0,90	4,5	2,03	0,116	0,195
C-9033A	30-36	70-120	0,62-0,75	До 0,90	4,5	1,84	0,09	0,163
C-9038A	35-42	70-120	0,60-0,73	До 0,90	4,5	1,75	0,081	0,141
C-5515A	12-18	45-75	0,72-0,87	До 0,90	4,5	4,41	1,195	0,912
C-5520A	17-23	45-75	0,70-0,85	До 0,90	4,15	2,15	0,273	0,275
C-4525A	21-28	35-65	0,60-0,75	До 0,90	4,58	3,30	0,703	0,536
C-6030A	27-34	45-85	0,52-0,70	До 0,90	3,46	1,49	0,118	0,154

17-23	45-85	0,60-0,70	До 0,90	4,5	2,26	0,338	0,348
22-28	55-90	0,50-0,67	До 0,90	4,5	1,89	0,242	0,235
10-14	70-120	0,72-0,87	0,85-1,15	5,66	3,31	0,388	0,420
				-	Оког	нчание	прил. 3
2	3	4	5	6	7	8	9
13-17	70-120	0,70-0,85	0,85-1,15	5,2	3,21	0,226	0,413
10-14	70-120	0,58-0,68	1,4-1,8	4,09	2,30	0,237	0,324
13-17	70-120	0,55-0,65	1,4-1,7	4,2	2,0	0,153	0,238
12-16	20-30	0,60-0,75	До 0,90	2,59	2,44	0,43	0,39
15-19	23-35	0,60-0,70	До 0,90	2,57	2,07	0,215	0,225
19-24	25-40	0,58-0,68	До 0,90	2,56	1,85	0,205	0,234
22-28	30-50	0,55-0,65	До 0,85	2,54	1,62	0,131	0,168
25-32	44-60	0,45-0,68	До 0,85	2,56	1,22	0,071	0,112
30-36	47-65	0,43-0,55	До 0,85	2,56	1,02	0,044	0,079
35-42	55-75	0,41-0,51	До 0,85	2,61	0,76	0,018	0,035
12-16	20-30	0,60-0,75	До 0,90	2,59	2,35	0,387	0,331
15-19	23-45	0,60-0,70	До 0,90	2,57	1,81	0,152	0,165
15-19	23-45	0,57-0,65	0,8-1,15	2,54	2,06	0,296	0,296
15-19	23-45	0,57-0,68	0,85-1,15	2,54	1,79	0,216	0,216
19-24	25-40	0,55-0,65	0,85-1,1	2,01	1,11	0,073	0,101
22-28	30-50	0,55-0,65	0,85-1,1	2,52	1,51	0,126	0,159
16-20	19-24	0,60-0,70	1,3-1,6	2,0	1,16	0,118	0,142
20-24	23-27	0,54-0,67	1,35-1,6	2,0	0,99	0,084	0,10
	17-23 22-28 10-14 2 13-17 10-14 13-17 12-16 15-19 19-24 22-28 25-32 30-36 35-42 12-16 15-19 15-19 15-19 15-19 15-19 15-24 22-28 16-20 20-24	17-23 45-85 22-28 55-90 10-14 70-120 2 3 13-17 70-120 10-14 70-120 13-17 70-120 13-17 70-120 13-17 70-120 12-16 20-30 15-19 23-35 19-24 25-40 22-28 30-50 25-32 44-60 30-36 47-65 35-42 55-75 12-16 20-30 15-19 23-45 15-19 23-45 15-19 23-45 15-19 23-45 15-19 23-45 15-19 23-45 15-19 23-45 19-24 25-40 22-28 30-50 16-20 19-24 20-24 23-27	17-23 45-85 0,60-0,70 22-28 55-90 0,50-0,67 10-14 70-120 0,72-0,87 2 3 4 13-17 70-120 0,70-0,85 10-14 70-120 0,58-0,68 13-17 70-120 0,55-0,65 12-16 20-30 0,60-0,70 19-24 25-40 0,58-0,68 22-28 30-50 0,55-0,65 25-32 44-60 0,45-0,68 30-36 47-65 0,43-0,55 35-42 55-75 0,41-0,51 12-16 20-30 0,60-0,70 15-19 23-45 0,57-0,65 35-42 55-75 0,41-0,51 12-16 20-30 0,60-0,70 15-19 23-45 0,57-0,65 15-19 23-45 0,57-0,65 15-19 23-45 0,57-0,65 15-19 23-45 0,57-0,65 15-19 23-45 0,57-0,65 15-22	$17-23$ $45-85$ $0,60-0,70$ $\square o,90$ $22-28$ $55-90$ $0,50-0,67$ $\square o,90$ $10-14$ $70-120$ $0,72-0,87$ $0,85-1,15$ $10-14$ $70-120$ $0,70-0,85$ $0,85-1,15$ $10-14$ $70-120$ $0,70-0,85$ $0,85-1,15$ $10-14$ $70-120$ $0,58-0,68$ $1,4-1,8$ $13-17$ $70-120$ $0,55-0,65$ $1,4-1,7$ $12-16$ $20-30$ $0,60-0,75$ $\square o,900$ $15-19$ $23-35$ $0,60-0,70$ $\square o,900$ $19-24$ $25-40$ $0,58-0,68$ $\square o,900$ $22-28$ $30-50$ $0,55-0,65$ $\square o,855$ $25-32$ $44-60$ $0,45-0,68$ $\square o,935$ $25-32$ $44-60$ $0,45-0,68$ $\square o,935$ $30-36$ $47-65$ $0,43-0,55$ $\square o,935$ $35-42$ $55-75$ $0,41-0,51$ $\square o,935$ $35-42$ $55-75$ $0,41-0,51$ $\square o,930$ $15-19$ $23-45$ $0,57-0,65$ $0,8-1,15$ $15-19$ $23-45$ $0,57-0,65$ $0,85-1,15$ $19-24$ $25-40$ $0,55-0,65$ $0,85-1,15$ $19-24$ $25-40$ $0,55-0,65$ $0,85-1,15$ $19-24$ $25-40$ $0,55-0,65$ $0,85-1,15$ $19-24$ $25-40$ $0,55-0,65$ $0,85-1,15$ $19-24$ $25-40$ $0,55-0,65$ $0,85-1,15$ $16-20$ $19-24$ $0,60-0,70$ $1,3-1,6$ $20-24$ $23-27$ $0,54-0,67$ $1,35-1,6$	$17-23$ $45-85$ $0,60-0,70$ $\square 0,90$ $4,5$ $22-28$ $55-90$ $0,50-0,67$ $\square 0,90$ $4,5$ $10-14$ $70-120$ $0,72-0,87$ $0,85-1,15$ $5,66$ $13-17$ $70-120$ $0,70-0,85$ $0,85-1,15$ $5,2$ $10-14$ $70-120$ $0,70-0,85$ $0,85-1,15$ $5,2$ $10-14$ $70-120$ $0,58-0,68$ $1,4-1,8$ $4,09$ $13-17$ $70-120$ $0,55-0,65$ $1,4-1,7$ $4,2$ $12-16$ $20-30$ $0,60-0,75$ $\square 0,900$ $2,59$ $15-19$ $23-35$ $0,60-0,70$ $\square 0,900$ $2,57$ $19-24$ $25-40$ $0,58-0,68$ $\square 0,900$ $2,56$ $22-28$ $30-50$ $0,55-0,65$ $\square 0,855$ $2,54$ $25-32$ $44-60$ $0,45-0,68$ $\square 0,985$ $2,56$ $30-36$ $47-65$ $0,43-0,55$ $\square 0,855$ $2,56$ $30-36$ $47-65$ $0,43-0,55$ $\square 0,855$ $2,56$ $35-42$ $55-75$ $0,41-0,51$ $\square 0,985$ $2,56$ $35-42$ $55-75$ $0,41-0,51$ $\square 0,985$ $2,56$ $35-42$ $55-75$ $0,41-0,51$ $\square 0,985$ $2,56$ $15-19$ $23-45$ $0,57-0,65$ $0,8-1,15$ $2,54$ $15-19$ $23-45$ $0,57-0,65$ $0,85-1,15$ $2,54$ $19-24$ $25-40$ $0,55-0,65$ $0,85-1,1$ $2,52$ $16-20$ $19-24$ $0,60-0,70$ $1,3-1,6$ $2,00$ $20-24$ $23-27$ $0,54-0,67$ <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>17-2345-85$0,60-0,70$$\square o$$0,90$4,52,26$0,338$22-2855-90$0,50-0,67$$\square o$$0,90$4,51,89$0,242$10-1470-120$0,72-0,87$$0,85-1,15$5,66$3,31$$0,388$OKONTURE234567813-1770-120$0,70-0,85$$0,85-1,15$5,2$3,21$$0,226$10-1470-120$0,58-0,68$$1,4-1,8$$4,09$$2,30$$0,237$13-1770-120$0,55-0,65$$1,4-1,7$$4,2$$2,00$$0,153$12-1620-30$0,60-0,75$$\square o$$0,90$$2,57$$2,07$$0,215$19-2425-40$0,58-0,68$$\square o$$0,90$$2,56$$1,85$$0,205$22-28$30-50$$0,55-0,65$$\square o$$0,85$$2,56$$1,22$$0,071$$30-36$$47-65$$0,43-0,55$$\square o$$0,85$$2,56$$1,02$$0,044$$35-42$$55-75$$0,41-0,51$$\square o$$0,85$$2,56$$1,02$$0,044$$35-42$$55-75$$0,41-0,51$$\square o$$0,90$$2,57$$1,81$$0,152$$15-19$$23-45$$0,60-0,70$$\square o$$0,90$$2,57$$1,81$$0,152$$15-19$$23-45$$0,57-0,65$$0,85-1,15$$2,54$$1,79$$0,216$$19-24$$25-40$$0,55-0,65$$0,85-1,15$$2,54$$1,79$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17-2345-85 $0,60-0,70$ $\square o$ $0,90$ 4,52,26 $0,338$ 22-2855-90 $0,50-0,67$ $\square o$ $0,90$ 4,51,89 $0,242$ 10-1470-120 $0,72-0,87$ $0,85-1,15$ 5,66 $3,31$ $0,388$ OKONTURE234567813-1770-120 $0,70-0,85$ $0,85-1,15$ 5,2 $3,21$ $0,226$ 10-1470-120 $0,58-0,68$ $1,4-1,8$ $4,09$ $2,30$ $0,237$ 13-1770-120 $0,55-0,65$ $1,4-1,7$ $4,2$ $2,00$ $0,153$ 12-1620-30 $0,60-0,75$ $\square o$ $0,90$ $2,57$ $2,07$ $0,215$ 19-2425-40 $0,58-0,68$ $\square o$ $0,90$ $2,56$ $1,85$ $0,205$ 22-28 $30-50$ $0,55-0,65$ $\square o$ $0,85$ $2,56$ $1,22$ $0,071$ $30-36$ $47-65$ $0,43-0,55$ $\square o$ $0,85$ $2,56$ $1,02$ $0,044$ $35-42$ $55-75$ $0,41-0,51$ $\square o$ $0,85$ $2,56$ $1,02$ $0,044$ $35-42$ $55-75$ $0,41-0,51$ $\square o$ $0,90$ $2,57$ $1,81$ $0,152$ $15-19$ $23-45$ $0,60-0,70$ $\square o$ $0,90$ $2,57$ $1,81$ $0,152$ $15-19$ $23-45$ $0,57-0,65$ $0,85-1,15$ $2,54$ $1,79$ $0,216$ $19-24$ $25-40$ $0,55-0,65$ $0,85-1,15$ $2,54$ $1,79$

			1		1	1
Марка стали	Температура, ° С	Предел текучести σ ₅ , МПа	Предел прочности σ _в , МПа	Модуль упругости E×10 ⁻⁴ , МПа	Коэффициент линейного расширения α×10 ⁶ , 1/К	Область применения
1	2	3	4	5	6	7
12X13 20X13	20 400 20 400 20	410 370 520 400 750	610 500 720 530 890	22 19 22 19 22	10,1 11,4 10,1 11,4 9,7	Рабочие лопатки, бандажные ленты, скрепляющие проволоки Рабочие лопатки Рабочие лопатки, диафрагмы,
	580	530	580	18	11,2	крепеж, заклепки хвостовых соединений Рабочие лопатки,
X15H35B3T	650	440	680	15	16,3	диски, роторы газовых турбин
ХН70ВМЮТ	20 700	690 570	1070 900	21,6 17,7	_ 15,1	Рабочие лопатки,
ХН77ТЮР	20 700	650 520	1000 830	19,6 14,7	 14,6	турбин
34XMA	20	475	680	22	12,3	

Приложение 4 Основные свойства и область применения некоторых марок сталей

						Валы, диски, штоки клапанов
I	I		I	I	I	Окончание прил.4
1	2	3	4	5	6	7
20X1M1	20	570	740	22	10,9	
	500	460	540	_	13,7	Цельнокованые
20Х3ВМФ	20	650	750	21	10,6	роторы
	500	510	530	_	12,6	
34XM1A	20	480	650	22	12,3	Сварные роторы
34XH3MA	20	765	830	21	10,8	Диски сборных роторов
20ХМЛ	20	355	520	21	10,9	
	550	260	340	-	13,7	Корпуса турбин,
20ХМФЛ	20	400	595	20	10,0	корпуса клапанов,
	550	305	395	17	13,6	сопловые и
15Х1М1ФЛ	20	350	575	22	12,4	клапанные коробки
	540	240	310	18	14,0	_

Приложение 5

h - *s* - диаграмма водяного пара

Приложение 6

Изображение реального процесса расширения пара в *h* - *s* диаграмме с учетом потерь в ступени скорости и в отсеках.

Приложение 7

Эскиз проточной части двухвенечной ступени скорости.

Оглавление

Выбор исходных данных для выполнения курсовой работы			
Выбор исходных данных для выполнения курсовой работы.			
. Исходные данные			
2. Выбор конструкции турбины			
3. Предварительная оценка экономичности турбины 17	1		
4. Детальный расчет двухвенечной регулирующей ступени 29)		
скорости			
5. Детальный расчет первой активной ступени			
Детальный расчет последней ступени турбины			
 Расчет на прочность рабочих лопаток последней 			
ступени			
Библиографический список			
Приложения:			
1. Варианты заданий 93	3		
2. Термодинамические свойства воды и перегретого пара			
3. Методика подбора профилей по «Атласу профилей 10°	7		
МЭИ»			
4. Основные свойства и область применения некоторых 11	1		
марок сталей			
5. <i>hs</i> диаграмма водяного пара 112	2		
6. Изображение реального процесса расширения пара в hs			
диаграмме с учетом потерь в ступени скорости и в отсеках.			
7. Эскиз проточной части двухвенечной ступени скорости.			

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего

профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 1

по дисциплине Судовые турбомашины

1. Принцип действия ГТУ.

Степень реактивности компрессорной ступени.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 2 по дисциплине Судовые турбомашины

1. ГТУ открытого цикла. Схема. Изображение в p-v и T-S координатах. Треугольники скоростей компрессорной ступени.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

ФЕДЕРАЛЬНОЕ АГЕНСТВО

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта»

(ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>3</u>

по дисциплине Судовые турбомашины

1. ГТУ закрытого цикла. Схема. Изображение в р-v и Т-S координатах.

2. Принцип действия турбины. Схема одноступенчатой турбины.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>4</u> по дисциплине <u>Судовые турбомашины</u>

1. Цикл реальной ГТУ. Схема. Тепловая диаграмма.

2. Многоступенчатая турбина со ступенями скорости.

Кафедра _ЭСЭУ_____

<u>7</u> семестр <u>7</u> курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ») Экзаменационный билет № <u>5</u> по дисциплине Судовые турбомашины

1. Цикл ГТУ с регенерацией теплоты. Схема. Тепловая диаграмма.

2. Многоступенчатая реактивная турбина со ступенями давления.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра _ЭСЭУ_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>6</u>

по дисциплине Судовые турбомашины

1. Цикл ГТУ с промежуточным охлаждением воздуха при сжатии и регенерацией теплоты. Схема. Тепловая диаграмма.

2. Многоступенчатая активная турбина со ступенями давления.

<u>7</u> семестр <u>7</u> курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>7</u>

по дисциплине Судовые турбомашины

1. Цикл ГТУ с промежуточным подогревом и регенерацией теплоты.

Схема. Тепловая диаграмма.

2. План скоростей реактивной турбины.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>8</u> по дисциплине <u>Судовые турбомашины</u>

1. ГТУ с раздельным перепадом теплоты. Схема. Тепловая диаграмма.

2. План скоростей активной турбины.

Кафедра ЭСЭУ_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 9 по дисциплине Судовые турбомашины

1. ГТУ с раздельным потоком газа. Схема. Тепловая диаграмма.

2. Реактивные турбины. График изменения давления и скорости абсолютной и относительной.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 10

по дисциплине Судовые турбомашины

1. ПТУ открытого цикла. Схема. Изображение в и Т-Ѕ координатах.

2. Принцип силового воздействия на лопатках реактивной турбины.

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное

Федеральное государственное оюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ») Экзаменационный билет № <u>11</u>

по дисциплине Судовые турбомашины

1. ПТУ закрытого цикла. Схема. Изображение в и Т-S координатах. 2. Активные турбины. График изменения давления и скорости абсолютной и относительной.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 12

по дисциплине Судовые турбомашины

1. Методы повышения эффективности ПТУ.

2. Принцип силового воздействия на лопатках активной турбины.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное

образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 13

по дисциплине Судовые турбомашины

1. ПТУ с промежуточным перегревом пара. Схема. Изображение в и Т-Ѕ координатах.

2. Принцип действия турбины. Схема одноступенчатой турбины.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 14

по дисциплине Судовые турбомашины

1. Степень реактивности и характеристика турбинной ступени.

2. Классификация турбин. Сравнение их с ДВС.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 15 по дисциплине Судовые турбомашины

1. Цикл ГТУ с промежуточным подогревом и регенерацией теплоты.

Схема. Тепловая диаграмма.

2. План скоростей реактивной турбины.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

Экзаменационный билет № 16 по дисциплине Судовые турбомашины

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

1. Цикл ГТУ с промежуточным охлаждением воздуха при сжатии и регенерацией теплоты. Схема. Тепловая диаграмма.

2. Многоступенчатая активная турбина со ступенями давления.

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный

университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 17 по дисциплине Судовые турбомашины

1. Цикл ГТУ с регенерацией теплоты. Схема. Тепловая диаграмма.

2. Многоступенчатая реактивная турбина со ступенями давления.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра ЭСЭУ_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 18

по дисциплине Судовые турбомашины

1. Цикл реальной ГТУ. Схема. Тепловая диаграмма.

2. Многоступенчатая турбина со ступенями скорости.

Кафедра ЭСЭУ_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный

университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 19 по дисциплине Судовые турбомашины

1. ГТУ закрытого цикла. Схема. Изображение в р-v и Т-S координатах.

2. Принцип действия турбины. Схема одноступенчатой турбины.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

Экзаменационный билет № 20 по дисциплине Судовые турбомашины

1. ГТУ открытого цикла. Схема. Изображение в р-v и Т-S координатах. 2. Треугольники скоростей компрессорной ступени.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное

образовательное учреждение высшего профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный

университет водного транспорта» (ФГБОУ ВПО «ВГУВТ») Экзаменационный билет № <u>21</u>

по дисциплине Судовые турбомашины

1. Принцип действия ГТУ.

2. Степень реактивности компрессорной ступени.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 22

по дисциплине Судовые турбомашины

1. ГТУ с раздельным перепадом теплоты. Схема. Тепловая диаграмма.

2. Классификация турбин. Сравнение их с ДВС.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 23 по дисциплине Судовые турбомашины

1. ГТУ с раздельным потоком газа. Схема. Тепловая диаграмма.

2. Принцип действия турбины. Схема одноступенчатой турбины.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 24

по дисциплине Судовые турбомашины

1. ПТУ открытого цикла. Схема. Изображение в и Т-Ѕ координатах.

2. Принцип силового воздействия на лопатках активной турбины.

МОРСКОГО И РЕЧНОГО

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 2024/25 учебного года

ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>25</u> по дисциплине <u>Судовые турбомашины</u>

1. ПТУ закрытого цикла. Схема. Изображение в и Т-Ѕ координатах.

2. Активные турбины. График изменения давления и скорости абсолютной и относительной.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>26</u>

по дисциплине Судовые турбомашины

1. Методы повышения эффективности ПТУ.

2. Принцип силового воздействия на лопатках реактивной турбины.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 27 по дисциплине Судовые турбомашины

- 1. ПТУ с промежуточным перегревом пара. Схема. Изображение в и Т-S координатах. 2.
- 2. Реактивные турбины. График изменения давления и скорости абсолютной и относительной.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 28

по дисциплине Судовые турбомашины

1. Степень реактивности и характеристика турбинной ступени.

2. План скоростей активной турбины.

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 29 по дисциплине Судовые турбомашины

1. ГТУ с раздельным перепадом теплоты. Схема. Тепловая диаграмма.

2. Классификация турбин. Сравнение их с ДВС.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 30

по дисциплине Судовые турбомашины

1. ГТУ с раздельным потоком газа. Схема. Тепловая диаграмма.

2. Принцип действия турбины. Схема одноступенчатой турбины.

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта»

(ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>31</u> по дисциплине <u>Судовые турбомашины</u>

1. ПТУ открытого цикла. Схема. Изображение в и Т-Ѕ координатах.

2. Принцип силового воздействия на лопатках активной турбины.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное

образовательное учреждение высшего профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ») Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 2024/25 учебного года

Экзаменационный билет № <u>32</u> по дисциплине <u>Судовые турбомашины</u>

1. ПТУ закрытого цикла. Схема. Изображение в и Т-Ѕ координатах.

2. Активные турбины. График изменения давления и скорости абсолютной и относительной.

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный

университет водного транспорта» (ФГБОУ ВПО «ВГУВТ») Экзаменационный билет № <u>33</u> по дисциплине <u>Судовые турбомашины</u>

1. Методы повышения эффективности ПТУ.

2. Принцип силового воздействия на лопатках реактивной турбины.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

Экзаменационный билет № <u>34</u>

по дисциплине Судовые турбомашины

1. ПТУ с промежуточным перегревом пара. Схема. Изображение в и T-S координатах.

2. Реактивные турбины. График изменения давления и скорости абсолютной и относительной.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное

образовательное учреждение высшего профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Кафе

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта»

(ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 35 по дисциплине Судовые турбомашины

1. Степень реактивности и характеристика турбинной ступени.

2. План скоростей активной турбины.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра ЭСЭУ_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 36

по дисциплине Судовые турбомашины

1. Принцип действия ГТУ.

2. План скоростей реактивной турбины.

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный

университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 37

по дисциплине Судовые турбомашины

1. ГТУ открытого цикла. Схема. Изображение в p-v и T-S координатах.

2. Многоступенчатая активная турбина со ступенями давления.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 38

по дисциплине Судовые турбомашины

1. ГТУ закрытого цикла. Схема. Изображение в р-v и Т-S координатах.

2. Многоступенчатая реактивная турбина со ступенями давления.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 39 по дисциплине Судовые турбомашины

1. Цикл реальной ГТУ. Схема. Тепловая диаграмма.

2. Многоступенчатая турбина со ступенями скорости.

Зав. Кафедрой ЭСЭУ Матвеев Ю.И.

Кафедра ЭСЭУ_____

7 семестр 7 курса 2024/25 учебного года

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № 40

по дисциплине Судовые турбомашины

1. Цикл ГТУ с регенерацией теплоты. Схема. Тепловая диаграмма.

2. Принцип действия турбины. Схема одноступенчатой турбины.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)

Экзаменационный билет № <u>41</u> по дисциплине <u>Судовые турбомашины</u>

1. Цикл ГТУ с промежуточным охлаждением воздуха при сжатии и регенерацией теплоты. Схема. Тепловая диаграмма.

2. Треугольники скоростей компрессорной ступени.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

Кафедра <u>ЭСЭУ</u>_____

<u>7</u> семестр <u>7</u> курса 20<u>24/25</u> учебного года

Экзаменационный билет № <u>42</u> по дисциплине <u>Судовые турбомашины</u>

1. Цикл ГТУ с промежуточным подогревом и регенерацией теплоты. Схема. Тепловая диаграмма.

2. Степень реактивности компрессорной ступени.

Зав. Кафедрой ЭСЭУ _____ Матвеев Ю.И.

ФЕДЕРАЛЬНОЕ АГЕНСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА Федеральное государственное бюджетное

образовательное учреждение высшего профессионального образования

«Волжский государственный университет водного транспорта» (ФГБОУ ВПО «ВГУВТ»)