Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Новиков Денис Владимирович Вопросы для самоподготовки по дисциплине

Должность: Директор филиала **Взаимодействие видов транспорта и мультимодальные перевозки»** Дата подписания: 11.11.2024 10:37:57

Уникальный программный ключ: 3357c68ce48e446 Организация разиионального взаимодействия различных видов транспорта в единой транспортной системе при смешанных перевозках.

- 2. Этапы внедрения технологий интермодальных и мультимодальных перевозок.
- 3. Выбор логистического посредника, перевозчика и экспедитора на основе многокритериального подхода.
- 4. Организация рационального взаимодействия логистических посредников при перевозках грузов.
- 5. Перевалка грузов по прямому варианту в пунктах взаимодействия.
- 6. Оптимизация использования подвижного состава и погрузочно-разгрузочных машин.
- 7. Выбор оптимального варианта транспортировки нефтепродуктов
- 8. Единый технологический процесс обработки транспортных средств.
- 9. Роль и значение единой транспортной системы при организации грузовых потоков в общем транспортном процессе доставки грузов.
- 10. Роль системы смешанных перевозок в логистической стратегии развития водного транспорта.
- 11. Мультимодальные перевозки как логистическая стратегия организаций водного транспорта.
- 12. Нормативные документы, регламентирующие смешанную перевозку груза
- 13. Современные фундаментальные научные исследования и научно-технический прогресс на транспорте
- 14. Научные исследования в области развития водного транспорта: отечественный и зарубежный опыт
- 15. Перевозки грузов в сообщении «река-море».
- 16. Контейнерные и пакетные перевозки грузов в смешанном сообщении.
- 17. Суда смешанного плавания.
- 18. Требования к унификации типоразмеров транспортных средств и перегрузочного оборудования.
- 19. Техническое взаимодействие при мультимодальных перевозках.
- 19. Критеприи выбора пунктов перевалки груза при смешанных и мультимодальных перевозках.
- 20. Определение вместимости складов промежуточных в промежуточных пунктах.
- 21. Технико-экономические показатели перевозок грузов в сообщении «река-море».
- 22. Технологические схемы передачи грузов при перевозках в сообщении «река-море».
- 23. Расчет норм времени обработки подвижного состава в перевалочных пунктах.
- 24. Передовой опыт использования и обработки транспортных средств при смешанных сообщениях.
- 25. Государственные стандарты на средства пакетирования грузов.
- 26. Виды упаковки при смешанной перевозке грузов.
- 27. Формирование укрупненной грузовой единицы при смешанной перевозке.
- 28. Факторы конкурентоспособности перевозки грузов в судах смешанного плавания.
- 29. Факторы конкурентоспособности мультимодальных перевозок.
- 30. Экономическая эффективность прямого варианта перевалки грузов.
- 31. Критерии качества терминальных технологических операций.
- 32. Критерии качества транспортных услуг при организации мультимодальных перевозок.

КОМПЛЕКТ ТИПОВЫХ ЗАДАЧ

по дисциплине «Взаимодействие видов транспорта и мультимодальные перевозки»

«Способность проектировать интегрированные цепи поставок товаров, разрабатывать рациональные транспортно-логистические технологии доставки грузов и пассажиров, обосновывать оптимальные параметры транспортно-логистических систем» (ПК-9)

ЗАДАНИЕ 1

Перевалка грузов по прямому варианту в пунктах взаимодействия

Рассчитать возможный объем перевалки каменного угля с железнодо – рожного транспорта на речной по технологическим вариантам для следу – ющих исходных данных.

- 1. Среднесуточный объем каменного, поступающий на перевалку , Q ... 7000 т/сут
- 2. Производительность перегрузочных установок причала при работе по технологическим вариантам, т/час

Вагон – судно, Р ₁₋₃	600
Вагон – склад, Р ₁₋₂	
Склад – судно, Р 2-3	200

3. Коэффициент использования причала по времени при работе по вариантам:

Вагон – судно, К1-3	0,80
Вагон – склад, К1-2	0,90
Склад – судно, К2-3	0,95

- 4. Грузоподъемность грузового теплохода , $\mathbf{q}_{\scriptscriptstyle \mathrm{T}}$ 1200 т

Исходные данные для самостоятельной работы

Вариант	Q	P1-3	P1-2	P2-3	Вариант	Q	P1-3	P1-2	P2-3
1.	7005	605	303	202	14.	7070	639	329	228
2.	7010	608	305	204	15.	7075	641	331	230
3.	7015	611	307	206	16.	7080	643	333	232
4.	7020	614	309	208	17.	7085	645	335	234
5.	7025	617	311	210	18.	7090	647	337	236
6.	7030	620	313	212	19.	7095	649	339	238
7.	7035	623	315	214	20.	8000	651	341	240
8.	7040	626	317	216	21.	8005	653	343	242
9.	7045	629	319	218	22.	8010	655	345	244
10.	7050	631	321	220	23.	8015	657	347	246
11.	7055	633	323	222	24.	8020	659	349	248
12.	7060	635	325	224	25.	8025	661	351	250
13.	7065	637	327	226	26.	8030	663	353	252

ПРИМЕР РЕШЕНИЯ

Коэффициент-1,1 1,11 1,12 1,13

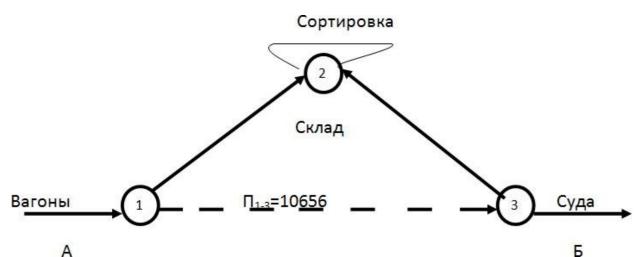


Рис. 1. Потоковый граф перевалки груза с ж/д транспорта на речной. Среднесуточный объем каменного угля, поступающий на перевалку, Q 1,1*7000 т/сут=7700

Производительность перегрузочных установок причала, т/ч при работе по технологическим вариантам:

вагон-судно, Р₁₋₃ 600*1,11=666

вагон-склад, Р₁₋₂ 300*1,12=336

склад-судно, Р₂₋₃ 200*1,13=226

коэффициент использования причала по времени при работе по вариантам:

вагон-судно, K_{1-3} 0,80

вагон-склад, К₁₋₂ 0,90

склад-судно, К₂₋₃ 0,95

грузоподъемность грузового теплохода, $q_{\scriptscriptstyle T}$ 1200 т

грузоподъемность баржи-площадки, $q_{\rm f}$ 1000 т

грузоподъемность вагона, q_в 63 т

среднее число вагонов в подаче, тп-у 16

коэффициент использования грузоподъемности теплохода,

баржи и полувагона, $\epsilon_{\text{т}}$, $\epsilon_{\text{б}}$, $\epsilon_{\text{в}}$ 1,0 продолжительность рабочего времени перегрузочных

продолжительность расочего времени перегрузочных установок причала в течение суток, t

вероятность безотказной работы ПРМ, Р_м 0,90

вероятность того, что не требуется перегрузка

груза на склад для взвешивания и других операций, P_{π} 0,98

Каменный уголь с порта перевозится составами (грузовой теплоход и баржаплощадка).

20ч

Потоковый граф перевалки грузов приведен на рис.1.

Решение

Для расчета возможного объема перевалки груза по технологическим вариантам предварительно определяют производительность ПРМ при работе по связям 1-3, 1-2, 2-3(см. рис.1.) расчет ведется по формуле

$$\Pi_{ij} = K_{ij} P_{ij} t_{ij}$$

гдеt_{іі} - продолжительность работы ПРМ в течение суток.

Для прямого варианта перевалки, используются исходные данные,

 $\Pi_{1-3}=0.80*666*20=10656 \text{ T/cyt}$.

Аналогично для остальных вариантов перевалки

 $\Pi_{1-2}=0.90*336*20=6048 \text{ T/cyt};$

 $\Pi_{2-3} = 0.95*226*20 = 4294 \text{ T/cyt.}$

Учитывая, что перевалка по прямому варианту осуществляется в течение 20 ч, масса груза, которая поступит в порт за это время, составит

Q°=7700*20:24=6416,6 т

Средняя интенсивность потока составов и подач:

 $\lambda_c = 7700/(1200+1000)1*24=0,145$ состава/ч.

 $\lambda_{\text{в}}$ =7700/63*1*16*24=0,318 подачи/ч.

Подставив в формулу (2) значения $\lambda_{c,}$ $\lambda_{B,}$ $P_{\pi,}$ $P_{M,}$ и $\Pi_{1\text{--}3,}$ определим неизвестный коэффициент P:

Обозначим

$$(1-e^{-\lambda_{ct}})(1-e^{-\lambda_{Bt}})*P_{\Pi}P_{M}\Pi_{1-3}=P.$$
 (2)

 $P=(1-e^{-0.145*20})(1-e^{-0.318*20})*0.98*0.9*10.6=8.80.$

Расчетные коэффициенты А,В,С определяем по формуле (3)

A=PQ(
$$\Pi_{1-2}\Pi_{2-3}$$
 - $\Pi_{1-3}\Pi_{2-3}$ - $\Pi_{1-3}\Pi_{1-2}$ + Π^2_{1-3}),
B=PQ($\Pi_{1-3}\Pi_{2-3}$ + $\Pi_{1-3}\Pi_{1-2}$ - 2 Π^2_{1-3}) - $\Pi^2_{1-3}\Pi_{1-2}\Pi_{2-3}$, (3)
C=PQ Π^2_{1-3}

A=8,80*6,4166(6,048*4,294-10,656*4,294-10,656*6,048+10,656²)=1655,34 B=8,80*6,4166(10,656*4,264+10,656*6,048-2*10,656²)-10,656²*6,048*4,294=-9549,5

 $C=8,80*6,4166*10,656^2=6411,7$

Доля груза, которая будет переработана по варианту «вагон-судно».

$$\eta = \frac{-B - \sqrt{B - 4AC}}{2A}$$

$$\eta = \frac{-(-9549,5) - \sqrt{(-9549,5) - 4*1655,34*6411,7}}{2*1655,34}$$

Месячный объем переработки груза по прямому варианту

Q_{пр}=6416,6*0,775*30,5=151672,3 т

Количество груза, выгружаемого на склад,

Q_{ск}= 7700*30,5-151672,3=83177,7 т

Производительность обработки вагонов по прямому варианту

$$P_{B} = K_{1-3}tP_{1-3}$$
 (5)

Подставив в (5) исходные данные, находим P_B =0,80*20,*666=10656 т/сут.

ЗАДАЧА 2. Оптимизация использования подвижного состава и погрузочно-разгрузочных машин

В порт прибыли четыре судна с общая масса которого составляет 15 700 т. Перегрузка осуществляется на железнодорожный транспорт. Известно, что судно A_1 доставило 6000 т руды, A_2 -4000 т угля, A_3 -2500 т тяжеловесов, A_4 -3200 т гравия. Грузы могут перегружаться по двум вариантам: прямому (судно-вагон) и варианту со складированием (судно-склад-вагон). Общее число вагонов, поданное за сутки в порт, обеспечивает перевалку по прямому варианту только 4600 т (любой груз обеспечивает полное использование грузоподъемности вагона). Требуется оптимизировать процесс перевалки грузов с воды на железную дорогу, выбрав такое распределение грузооборота по вариантам, при котором стоимость перевалки будет наименьшей. Стоимость перевалки 1 т груза по каждому варианту приведена в табл.1.

Таблица 2 Стоимость перевалки 1т груза по всем вариантам

№ п/п	Суда	Род груза	Стоимость перевалки, долл/т		
	•		Судно-вагон	Судно-склад-	
				вагон	
1.	A1	Руда	6,0	9,0	
2.	A2	Уголь	8,0	12,0	
3.	A3	Тяжеловесы	15,0	24,0	
4.	A4	Гравий	12,0	21,0	

Исходные данные для самостоятельной работы приведены в табл.2 Таблица 2 Сведения о массе прибывшего в порт груза в судах

Варианты	Масса приб	Всего,т			
	A1	A2	A3	A4	
1.	6010	4015	2520	3225	15770
2.	6015	4020	2525	3230	15790
3.	6020	4025	2530	3235	15810
4.	6025	4030	2535	3240	15830
5.	6030	4035	2540	3245	15850
6.	6035	4040	2545	3250	15870
7.	6040	4045	2550	3255	15890
8.	6045	4050	2555	3260	15910
9.	6050	4055	2560	3265	15930
10.	6055	4060	2565	3270	15950
11.	6060	4065	2570	3275	15970
12.	6065	4070	2575	3280	15990
13.	6070	4075	2580	3285	16010

2585

3290

16030

4080

6075

14.

15.	6080	4085	2590	3295	16050
16.	6085	4090	2595	3300	16070
17.	6090	4095	2600	3305	16090
18.	6095	4100	2605	3310	16110
19.	6100	4105	2610	3315	16130
20.	6105	4110	2615	3320	16150
21.	6110	4115	2620	3325	16170
22.	6115	4120	2825	3330	16190
23.	6120	4125	2830	3335	16210
24.	6125	4130	2835	3340	16230
25.	6130	4135	2840	3345	16250

Пример решения

Общее число вагонов, поданное за сутки в порт обеспечивает перевалку по прямому варианту только 4600 т (любой груз обеспечивает полное использование грузоподъемности вагона).

Для оптимизации процесса перевалки груза в порту необходимо определить минимум функционала:

$$\mathbf{E} = \sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Cij} \operatorname{Xij} \to \min$$

при выполнении ограничений

$$X_{ij} \ge 0$$
 ; $\sum_{i=1}^{m} X_{ij} = \Pi_{j}$ $\sum_{i=1}^{n} X_{ij} = a_{i}$

где Π_{j} -объем перевалки по j-му варианту,

а_і-масса груза, доставляемого в порт і-м типом судна,

 C_{ij} -себестоимость перевалки груза с i-судна j-м способом.

Учитывая, что парк вагонов, подаваемых в порт, обеспечивает прямую пере валку Π_1 = 4600 т, то объем перегрузки через склад

$$\Pi 2 = \sum_{i=1}^{m} ai - \Pi 1$$

или

 Π_2 -(6000+4000+2500+3200) -4600=11 100 T

Процесс оптимизации удобно осуществлять с помощью специальной вспомогательной таблицы(табл. 2).

В табл. 2. наименьшее значение критерия оптимальности (стоимость перевалки 1 т груза) C_{ij} =6 коп, что соответствует прямой перегрузке груза с судна A_1 в вагоны. Помещаем в эту клетку максимально возможный объем перерабатываемого груза-4600 т, а первый столбец из дальнейшего рассмотрения исключается. В оставшейся части (см. табл 2) наименьшее значение критерия равно 9. В клетку 12 помещается максимально возможный объем перевалки, который равен 6000- 4600=1400 т, а вариант «судно- вагон» из рассмотрения исключается. Аналогично заполняют остальную часть таблицы.

Для начального плана должно выполняться условие

Z=m+n-1,

где z- число занятых клеток,

т,п-число соответственно строк и столбцов в расчетной таблице.

Число строк m=4, а столбцов n=2, тогда z=4+2-1=5.

Таким образом, требование к начальному плану соблюдается.

Полученный начальный план (см табл. 2) улучшается одним из известных методов, в частности методом потенциалов. Система потенциалов строится в соответствии с выражением

 $V_j = u_i + C_{ij}$, если $X_{ij \geq 0}$

где u_i-потенциал строки, v_j-потенциал столбца.

Присваивая строке, содержащей занятую клетку, произвольный потенциал (чаще присваивается нулевой потенциал строке, содержащей занятую клетку с максимальным Сіј), по выражению рассчитываются потенциалы остальных строк и столбцов.

Принимая для третьей строки потенциал u_3 = 0, находится потенциал второго столбца: v_2 = 0+ 24=24. По известному потенциалу второго столбца, используя выражение, определяют u_1 = 24-9= 15; u_2 = 24-12=12; u_4 =24-21=3; v_1 =15+6=21. Внесем в табл.3. начальное решение и найденные потенциалы (шаг 1).

Для свободных клеток проверяется соблюдение условия

$$\triangle_{ij}=v_j-u_i\leq C_{ij}$$

 $\triangle_{21}=v_1-u_2=21-12=9>8$ - нарушение условия оптимальности;

 $\blacktriangle_{31}=v_1-u_3=21-0=21>15$ - нарушение условия оптимальности;

 $\triangle_{41}=v_1-u_4=21-3=18>12$ - нарушение условия оптимальности;

Выбирая клетку с максимальным на рушением условия оптимальности (клетка 31), строится замкнутый контур. Одна из вершин контура находится в свободной клетке, а остальные-в базисных клетках-11,12, 32. Вершины этого контура нумеруют, начиная с вершины, находящейся в незанятой клетке.

Изменение данных в таблице производится путем уменьшения объема перевалки в четных и увеличения-нечетных на наименьшую величину, находящуюся в четных клетках. В нашем примере в четных клетках находятся числа 4600 и 2500. Следовательно, объемы перевалки в нечетных клетках могут быть увеличены на 2500 т. Новый план распределения перевалки грузов приведен в табл.4 (шаг 2).

Для нового плана пересчитывают потенциалы и снова проверяют выполнение условия. Проверка на оптимальность показывает, что нарушение имеет место только для клетки 41. Для устранения нарушения составляется но- вый план(табл. 5).

Анализ табл.5. показывает, что оптимальный режим взаимодействия обеспечивается, если по прямому варианту будут перегружаться 2500 т тяжеловесов и 2100 т гравия. Через склад следует перегрузить 6000 т руды, 4000 т угля и 1100 т гравия. В этом случае расходы на перевалку будут минимальны: E = 2500*0, 15+2100*0, 12+6000*0, 09+4000, 12+1100*0, 12+1

План, составленный по методу наименьшей стоимости, дал бы расходы

 $E=4600*0,06+1400\ 0,09+4000*\ 0,12+2500\ *0,24+3200\ *0,21=2154$ долл./сут.

Относительное $\triangle_{\text{от}}=(2154-1868)/1878*100=14,7\%$

Таблица 2

Судно	Варианты перевали	a_{i}	
	Судно-вагон Судно-склад-		
		вагон	
A_1	6	9	4100
A_2	8	12	4200
A_3	15	24	2600
A_4	12	21	3300
$\Pi_{\rm j}$	4600	11100	$\sum = 15700$

Таблица 3

	Потенциалы	Варианты пе	$a_{\rm i}$	
Судно	V_{j}	Судно-вагон	Судно-склад-	
			вагон	
	u_i	21	24	
A_1	15	6	9	6000
		2 4600	1400 3	
A_2	12	8	12	4000
			4000	
A_3	0	15	24	2500
		1	2500 4	
A_4	3	12	21	3200
			3200	
$\Pi_{\rm j}$		4600	11100	$\sum = 15700$

Таблица 4

	Потенциалы	Варианты пе	еревалки груза	a_{i}
Судно	V_{j}	Судно-вагон	Судно-склад-	
(Z)	$\mathbf{u_i}$		вагон	
		18	21	
A_1	12	6	9	6000
		2 2100	3900 3	
A_2	9	8	12	4000
			4000	
A_3	3	15	24	2500
		2500		
A_4	0	12	21	3200
		1	3200 4	
$\Pi_{\rm j}$		4600	11100	$\sum = 15700$

Таблица 5

О 뜻 Потенциалы	Варианты перевалки груза	a_{i}
----------------	--------------------------	---------

	V_{j}	Судно-вагон	Судно-склад-	
	u_i		вагон	
		12	21	
A_1	12	6	9	6000
			6000	
A_2	9	8	12	4000
			4000	
A_3	3	15	24	2500
		2500		
A_4	0	12	21	3200
		2100	1100	
$\Pi_{\rm j}$		4600	11100	$\sum = 15700$

ЗАДАЧА 3.

Выбор оптимального варианта транспортировки нефтепродуктов

Фирма N, занимающаяся организацией и экспедированием перево — зок экспортных ,импортных и транзитных грузов , заключила контракт на доставку $21\,000$ т нефтепродуктов от Ачинского нефтеперегонного завода (Красноярский край) на новую нефтебазу , построенную на тер — ритории Монголии в г. Тэс — Сомон .

Варианты схем транспортировки нефтепродуктов, тарифы на тран — спортировку, тарифы на подачу транспорта к месту погрузки, тарифы на перевалку приведены в контрольном примере. Там же приведена схема расположения транспортных предприятий, перевалочных нефтебаз и нефтебаз получателя.

Требуется выбрать оптимальную схему транспортировки нефтепро – дуктов, используя в качестве критерия минимум полных затрат.

Исходные данные для самостоятельного решения

Таблица 1 Исходные данные для базового варианта доставки нефтепродуктов

Ba-	Марш -	Объем пе-	Стоимость	Ba-	Марш-	Объем	Стоимость
ри-	рут	ревозки,	перевозки,	ри-	рут	перевоз-	перевозки,
ант		T	долл	ант		ки ,т	долл
1.		21 025	1 323 033	14.		21 350	1 343 484
2.		21 050	1 324 606	15.		21 375	1 345 057
3.		21 075	1 326 180	16.	* 7	21 400	1 346 631
4.	Улан-	21 100	1 327 753	17.	Улан- Гом-	21 425	1 348 204
5.	Гом -	21 125	1 329 326	18.	Тэс -	21 450	1 349 777
6.	Тэс- Сомон	21 150	1 330 899	19.	Сомон	21 475	1 351 350
7.	Comon	21 175	1 332 472	20.		21 500	1 352 923
8.		21 200	1 334 045	21.		21 525	1 354 496
9.		21 225	1 335 619	22.		21 550	1 356 070
10		21 250	1 337 192	23.		21 575	1 357 643
11.		21 275	1 338 765	24.		21 600	1 359 216
12.		21 300	1 340 338	25.		21 625	1 360 789
13.		21 325	1 341 911	26.		21 650	1 362 362

ПРИМЕР РЕШЕНИЯ

Сеть железных и автомобильных дорог в регионе, схема расположения транспортных предприятий, перевалочных нефтебаз и нефтебаз получателя представлена на рис 1. числами на схеме указаны расстояния между объектами, выраженные в километрах.

Транспортировка осуществляется в два этапа.

Первый этап: железнодорожным транспортом от Ачинска до нефтебаз Минусинска или Абазы. Стоимость, доставки нефтепродуктов по железной

дороге от Ачинского нефтеперегонного завода до этих нефтебаз является одинаковой, на расчеты влияния не оказывает и не учитывается.

Второй этап: автомобильным транспортом до Тэс-Сомона.

Для обеспечения этих поставок фирма N заключает контракты с автотранспортными предприятиями на перевозку и с нефтебазами на перевалку и хранение нефтепродуктов

В регионе имеются два транспортных предприятия, отвечающих требованиям, предъявляемым к международным автомобильным перевозчикам: первое в г. Аскиз второе в г. Минусинске.

В регионе имеются также две нефтебазы в г. Абаза и в Минусинске, которые являются ближайшими к конечному месту доставки и способны переваливать и хранить необходимый объем нефтепродуктов принять во установлен внимание, что регионе регулярно действующий маршрут(базовый вариант): нефтепродукты железной дороге ПО доставляются в нефтебазу Абазы.

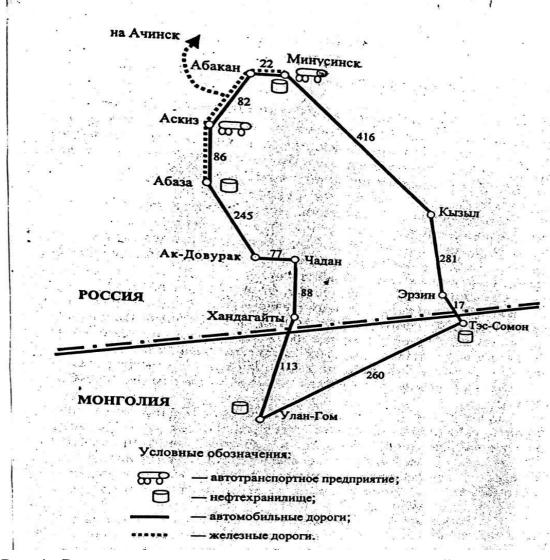


Рис. 1. Схема расположения транспортных предприятий, перевалочных нефтебаз и нефтебаз получателя

Далее, на участке Абаза- Улан-Гом перевозка осуществляется силами Аскизского АТП. На участке Улан-Гом- Тэс-Сомон работает в транспорт Монголии. Стоимость продвижения 21 000 т нефтепродуктов до Тэс-Сомона

по базовому варианту составляет 1 321 460 долл. США. Выбрать оптимальную схему транспортировки нефтепродуктов, используя в качестве критерия минимум полных затрат.

Возможные варианты схем транспортировки приведены в табл. 1. Варианты схем транспортировки нефтепродуктов.

Таблица1

Показатель	Вариант1	Вариант2	Вариант3
Перевалка	Через нефтебазу	Через нефтебазу	Через нефтебазу
	Абазы	Минусинска	Минусинска
Перевозчик	Аскизское АТП	Аскизское АТП	Минусинское АТП
Маршрут	Абаза-Улан-Гом-	Минусинск-Кызыл-	Минусинск-Кызыл-
	Тэс-Сомон	Тэс-Сомон	Тэс-Сомон

Методические указания и расчеты:

Коэффициент -1,1.

Выбор схемы транспортировки нефтепродуктов основан на проведении расчетов по разным вариантам. Критерий вы- бора, как уже отмечалось, минимум полных затрат.

Расчеты проводят в несколько этапов.

1. Пользуясь данными табл. 1, а также значениями расстояний, указанных на рис. 1, рассчитать стоимость ($C_{тp}$) транспортировки нефтепродуктов по каждому из вариантов.

Тарифы за транспортировку нефтепродуктов (T_{mp}) Таблица 1.2.

Перевозчик	Ед. изм.	Размер тарифа
1. Аскизское АТП	долл./т-км	0,060
2.Минусинское АТП	долл./т-км	0,064

Различие в тарифах за перевозку грузов у российских перевозчиков объясняется масштабом деятельности предприятий. Аскизское АТП- крупное автохозяйство имеет большое количество автотранспорта. Минусинское АТП располагает меньшим количеством подвижного со става, соответственно тарифы этого предприятия несколько выше.

Внутренний тариф на перевозки в Монголии(0,09 долл./ т-км) существенно выше тарифов российских автотранспортных предприятий, за в международных перевозках, в силу отсутствия большегрузного подвижного состава, высокой стоимости топлива, а также ряда других факторов. Результаты расчета внесите в табл. 1.4.

2. Рассчитать стоимость подачи транспортных средств под погрузку($C_{\text{подачи}}$). Тариф за подачу транспорта к месту погрузки:

$$T_{\text{подачи}} = 0.2$$
 долл./км.

В связи с тем что месторасположение транспортных В предприятий и нефтебаз в первом и втором вариантах не дают, возникают ра связанные с подачей автомобилей под погрузку. Стоимость подач определяется по формуле:

$$C_{\text{подачи}} = T_{\text{подачи}} *N * L,$$

где L- расстояние между транспортным предприятием и нефтебазой, км

N-количество рейсов, необходимых для выполнения заданного объема перевозок.

Рассчитывается по формуле:

N=Q/q,

где Q- общий объем перевозок, равный по договору 23,100 т;

q-грузоподъемность автомобиля принимается из расчета средней грузоподъем-

ности автопоезда 15 т.

Результаты расчета внесите в табл. 1.4

3.Пользуясь данными табл. 2.3, рассчитать стоимость перевалки нефтепродуктов

на нефтебазах.

Тарифная стоимость перевалки нефтепродуктов

Таблица 1.3.

1 40011111111111111				
Нефтебаза	Ед. изм.	азмер тарифа		
Абазинская нефтебаза	долл./т.	7		
Минусинская нефтебаза	долл./т.	10		

Результаты расчета внесите в табл. 1.4

4. Рассчитать полные затраты по 3-м вариантам схем транспортировки. Расчет выполнить в форме табл. 1.4.

Расчет полных затрат по схемам транспортировки нефтепродуктов

Таблица 1.4.

№п/п	Наименование	Вариант1	Вариант2	Вариант3
	показателя			
1	Стоимость	45,68	41,79	44,6
	транспортировки			
	нефтепродуктов			
2	Стоимость подачи	1082885	1056457	1068457
	транспортных средств			
	под погрузку			
3	Стоимость перевалки	252500	264600	277000
	нефтепродуктов на			
	нефтебазах			
Итого	затрат	1335430,68	1321098,79	11345501,6

^{5.}Выбрать для реализации вариант схемы нефтепродуктов, отвечающий критерию минимума полных затрат- это вариант 2.

Задача 4.

Единый технологический процесс обработки транспортных средств Составить:

- 1. Контактный график взаимодействия железнодорожного и речного видов транспорта в речном порту при несогласованном поступлении судов и вагонов и использовании буферного склада.
- 2. Технологическую таблицу работы причала

Пример решения

Эксплуатационная производительность при перевалке грузов по различным вариантам показана на рис. 1. Прибытие железнодорожного маршрута массой 2000 т ожидается в 10 ч 30 мин, а подача порожнего речного состава из двух барж массой 2*1000- в 14 ч 30 мин.

Продолжительность технологических операций по обработке подвижного состава принять:

по обработке речного состава

по прибытии $t_{rc}=1,5$

то же по отправлению $t_{oc}=2$

по обработке железнодорожных составов

по прибытии t_{np} =0,5

то же по отправлению t_{ot} =0,5

по формированию состава t_{Φ} =0,5

Продолжительность подачи-уборки вагонов на причал $t_{\rm n-y}$ =0,5

Количество подач уборок $X_{n-y}=2$

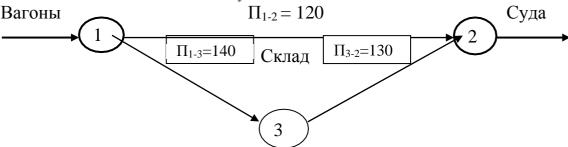


Рис. 1. Потоковый граф обработки подвижного состава в речном порту Из-за неравномерности поступления в пункт взаимодействия судов и вагонов, несогласованности расписаний движения только часть грузопотока может быть перевалена по прямому варианту.

Кроме того, ограничение времени простоя подвижного состава в ожидании грузов приводит к тому, что часть грузопотока перегружается через склад, который играет роль накопителя. Графическая иллюстрация процесса взаимодействия железнодорожного и речного транспорта при несогласованном подводе судов и вагонов в порт показана на рис. 2.

К моменту времени поступления вагонов на грузовой путь(11 ч 30 мин) на складе имеется переходящий остаток груза 1000 т. С 11 ч 30 мин (точка а) начинается выгрузка груза из вагонов на склад, так как в порту отсутствует судно для перевалки груза по прямому варианту. Продолжительность

выгрузки на склад определяется временным интервалом между подачей вагонов на грузовой путь 1 и швартовкой судна у причала. Учитывая, что речной состав прибывает в 14 ч 30 мин, а продолжительность обработки по прибытии 1,5 ч, то прямой вариант перевалки можно организовать с 16 ч 00 мин (точка б). Таким образом,

$$\Delta t_1 = t_6 - t_a = 16 - 11,5 = 4,5 \,\mathrm{y}$$

где Δt_1 -продолжительность выгрузки груза из вагона на склад;

 $t_{\rm 5}, t_{\rm a}$ - соответственно моменты начала и конца операции выгрузки груза на склад.

За это время на склад поступит груз в количестве $Q_{c1} = \Delta t_1 * \Pi_{1-3}$.

Подставив исходные данные, получим $Q_{c1} = 4.5 * 140 = 630 \text{ т.}$

К моменту $t_{\rm б}$ остаток груза на складе $Q_{\rm c}^{\rm 6}=1000+630=1630$ т.

В интервале времени $[t_6, t_в]$ ведется одновременная погрузка первой баржи речного состава и выгрузка подач вагонов 1 и 2. Продолжительность этого интервала

$$\Delta t_2 = q_c * \varepsilon_c / \Pi_{1-2} = 1000 * 1.0:120 = 8,33 ч.$$

Процесс перевалки груза по прямому варианту закончится к моменту времени

$$t_{\text{в}} = t_{\text{б}} + \Delta t_{2} = 16 + 8,33 = 24,33 = 1$$
 ч 20 мин.

В момент времени t_B баржа 1 отшвартовывается и подается на рейд отправления, а баржа 2 пришвартовывается к причальной стенке. Продолжительность этих операций 0.5 ч. т.е. $\Delta t_2 = 0.5$ ч. За это время в

Продолжительность этих операций 0,5 ч, т.е. $\Delta t_3 = 0,5$ ч. За это время на склад из вагонов будет выгружено

 Q_{cs} =140*0,5=70 т., а на складе остаток груза к моменту времени t_r составит 1700 т (1630+70).

От t_r до t_d вновь идет непосредственная перевалка из вагонов в суда, а от t_d до t_e (отсутствие груза «на колесах») начинается погрузка в судно со склада.

Продолжительность интервала $[t_{r}, t_{e}]$

$$\Delta t_2 = (Q_c - \Delta t_1 \Pi_{1-3} - \Delta t_2 \Pi_{1-2} - \Delta t_3 \Pi_{1-3})$$
: $\Pi_{1-2} = (2000-4,5*140-8,33*120-0,5*140)$: $120=2,5$ ч.

За это время будет закончена выгрузка вагонов.

Погрузка груза со склада в судно начнется в момент $t_{\rm д}$ и закончится в $t_{\rm e}$. За это время ($\Delta t_{\rm 5}$) со склада необходимо погрузить 700 т.

Продолжительность погрузки $\Delta t_5 = 700:130 = 5,38$ ч.

Анализ графика взаимодействия показывает, что максимальное количество груза, накопившееся в порту, составляет 1700 т.

Рис. 2. Контактный график взаимодействия ж/д и речного транспорта в порту при несогласованном поступлении судов и вагонов и использовании буферного склада

Таблица операций работы причала

Операции	Продолжительность		Наличие груза на		
1	операции, ч	Время, ч	складе, т		
	1 , ,		было	стало	
1)Прибытие ж/д		10:30	1000	1000	
составов					
2)Обработка по	0:30	11:00			
прибытии					
3)Расформирование	0:30	11:30			
состава					
4)Выгрузка вагонов по	4:30	16:00	1000	1630	
варианту вагон-склад					
5)Приход речного		14:30			
состава					
6)Технологические	1:30	16:00			
операции					
7)Окончание выгрузки		19:05	1630	1630	
вагонов с 1 пути					
8)Уборка вагонов с 1	0:30	19:35	1630	1630	
пути					
9)Начало выгрузки из		19:35			
ж/д со 2 пути					
10)Выгрузка грузов по	4:45	24:20	1630	1630	
прямому варианту со 2					
пути					
11)Выгрузка из		24:20			
вагонов на склад					
12)Продолжительность	0:30	24:50	1630	1700	
выгрузки					
13) Окончание		3:20	1700	1730	
выгрузки вагонов с 2					
пути					
14) Уборка вагонов с 2	0:30	3:50	1730	1730	
пути			. =	1077	
15)Окончание	4:40	8:30	1730	1000	
выгрузки из склада на					
судно	2.12	10.12	1000	4.000	
16)Подготовка судна к	2:13	10:43	1000	1000	
отправлению		10.42	1000	1000	
17)Отправление судна		10:43	1000	1000	

ИСХОДНЫЕ ДАННЫЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Варианты	П 1-2,т/час	П1-3, т/час	П 3-2, т/час	Прибытие	Прибытие
	1-2,17 100	11 1-3, 1/10c	11 13-2, 1/ 10C	ж/д	речного сос-
				состава,	тава,час-мин
				час-мин	
1.	121,0	141,0	131,0	0-15	6-15
2.	123,0	143,0	133,0	0-45	6-45
3.	125,0	145,0	135,0	1-15	7-15
4.	127,0	147,0	137,0	1-45	7-45
5.	129,0	149,0	139,0	2-00	8-00
6.	131,0	151,0	141,0	2-30	8-30
7.	133,0	153,0	143,0	3-00	9-00
8.	135,0	155,0	145,0	3-30	9-30
9.	137,0	157,0	147,0	4-20	10-20
10.	139,0	159,0	149,0	4-50	10-50
11.	141,0	161,0	151,0	5-20	11-20
12.	143,0	163,0	153,0	5-50	11-50
13.	145,0	165,0	155,0	6-15	12-15
14.	147,0	167,0	157,0	6-45	12-45
15.	149,0	169,0	159,0	7-15	13-15
16.	122,0	142,0	132,0	7-45	13-45
17.	124,0	144,0	134,0	8-20	14-20
18.	126,0	146,0	136,0	8-50	14-50
19.	128,0	148,0	138,0	9-20	15-20
20.	130,0	150,0	140,0	9-50	15-50
21.	132,0	152,0	142,0	10-15	16-15
22.	134,0	154,0	144,0	10-45	16-45
23.	136,0	156,0	146,0	11-15	17-15
24.	138,0	158,0	148,0	11-45	17-45
25.	140,0	160,0	150,0	12-15	18-15

Недостающие значения принимаются по контрольному примеру

ОПРОС

по дисциплине «Взаимодействие видов транспорта и мультимодальные перевозки»

ПК-5 «Способность к организации процесса доставки груза или пассажиров на основе принципов логистики с учетом рационального взаимодействия участников цепи поставок, предоставлению услуг транспортно-логистического сервиса предприятиям и организациям»

- 1. Этапы внедрения технологий интермодальных и мультимодальных перевозок.
- 2. Интермодальные транспортные технологии: особенности и характеристики.
- 3. Мультимодальные транспортные технологии: особенности и характеристики.
- 4. Технологическое взаимодействие видов транспорта при передаче грузов.
- 5. Правовые основы взаимодействия видов транспорта.
- 6. Нормативные документы, регламентирующие смешанную перевозку груза
- 7. Перевозки грузов в сообщении «река-море».
- 8. Перевозки грузов в смешанном железнодорожно-водном сообщении.
- 9. Мультимодальные транспортные системы.
- 10. Контейнерные и пакетные перевозки грузов в смешанном сообщении.
- 11. Суда смешанного плавания.
- 12. Технологии грузовой обработки судов и вагонов.
- 13. Средства технического взаимодействия железнодорожного и водного транспорта в портах.
- 14. Железнодорожные устройства в портах.
- 15. Требования к унификации типоразмеров транспортных средств и перегрузочного оборудования.
- 16. Техническое взаимодействие при мультимодальных перевозках.
- 17. Обоснование оптимальной организации перевозок грузов в сообщении «река-море».
- 18. Обоснование схем перевозок. Выбор пунктов перевалки груза.
- 19. Технологические схемы передачи грузов при перевозках в сообщении «река-море».
- 20. Этапы обработки подвижного состава в перевалочных пунктах.
- 21. Передовой опыт использования и обработки транспортных средств при смешанных сообщениях.
- 22. Основных параметры причального фронта.
- 23.Основные параметры портовых складов.
- 24. Основные параметры ж.д.районного парка терминала.
- 25. Основные параметры автомобильного перегрузочного фронта.
- 26. Технические условия и правила перевозки грузов
- 27. Государственные стандарты на средства пакетирования грузов.
- 28. Подготовка груза к смешанной перевозке: упаковка и особенности.
- 29. Формирование укрупненной грузовой единицы при смешанной перевозке.
- 30. Мультимодальные перевозки как логистическая стратегия