Документ подписан простой электронной подписью Информация о владельце: ФИО: Новиков Денис Владимирович Должность: Директор филиала Дата подписа Федеральное: Государственное бюджетное образовательное учреждение Уникальный программный ключ: 3357c68ce48ec4f695c95289ac7a9678e502be60 высшего образования «Волжский государственный университет водного транспорта» Специальность 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики» Контрольная работа (письменная) проведение измерения и наблюдения, обработка и представление экспериментальных данных

формирует компетенцию ОПК-3, А-III/6-1.7., А-III/6-2.1.

Оценочные средства по дисциплине «Судовые информационно-измерительные системы»

Заведующий кафедрой Э и ЭОВТ

JP/-

ЗАДАЧА ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ КОСВЕННЫМ МЕТОДОМ

Для измерения сопротивления косвенным методом использовались два прибора: амперметр и вольтметр магнитоэлектрической системы.

Измерение сопротивления производилось при температуре $t^{\circ}C$ приборами группы A, Б или B. Данные приборов, их показания, а также группа приборов и температура окружающего воздуха, при которой производилось измерение сопротивления, приведены в таблице 1.

Определить:

- 1. величину сопротивления r_X по показаниям приборов и начертить схему;
- 2. величину сопротивления r_X с учетом схемы включения приборов;
- 3. наибольшие возможные (относительную и абсолютную) погрешности результата измерения этого сопротивления;
- 4. в каких пределах находятся действительные значения измеряемого сопротивления.

Таблица 1

	Наименование величин	Единицы	Предпосле- дняя цифра Последня						яя цифра шифра						
		измерения	шифра	0	1	2	3	4	5	6	7	8	9		
	Предел измерения U_U	В	1	300	150	15	7,5	300	30	300	150	75	30		
Į.	Ток полного отклонения при U_{U}	мА	=	3	7,5	1	1	7,5	1	1	3	1	7,5		
Данные в	Класс точности 🔀	%	1	0,2	0,5	1,0	0,2	0,5	1,0	1,0	0,5	0,5	1,0		
вольтметра	Показание вольтметра U	B B B B	0; 5 1; 6 2; 7 3; 8 4; 9	220 280 250 170 290	140 130 120 110 150	12 10 8 11 14	60 70 65 75 55	240 260 210 250 200	27 25 23 28 29	270 180 230 240 160	100 110 140 120 130	50 60 70 65 75	20 26 18 22 25		
	Предел измерения I _н		-	1,5	3,0	1,5	7,5	0,3	15	1,5	1,5	0,3	15		
Данн	Падение напряжения на зажимах прибора при I _н		-	100	95	10 0	14 0	27	100	100	100	27	100		
ые амі	Класс точности 🔀		-	0,5	1,0	0,2	0,5	1,0	0,2	1,0	0,5	0,2	1,5		
Данные амперметра	Ток ${ m I_H}$		0; 1 6; 2 7; 3 8; 4 9; 5	1,0 1,5 2,0 2,5 3,0	1,5 3,0 6,0 4,5 7,5	2,0 10 5,0 1,5 0,5	10 2,0 3,0 5,0 2,5	1,5 3,0 4,5 15 30	3,0 1,5 6,0 4,5 0,3	25 2,5 5,0 7,5 0,5	30 25 15 1,5 7,5	20 5,0 10 0,5 4,0	5 15 0,5 1,0 20		
	Группа приборов			A	Б	В	A	Б	В	A	Б	В	A		
	Температура <i>t</i>		℃	10	0	-10	30	10	0	25	30	40	10		

Таблица 2

Параметры	Группы приборов								
окружающего воздуха	A	Б	В						
Температура	от +10 до + 35°C	от – 30 до +40°C	от – 50 до + 60°C						

Изменение показаний прибора, вызванное отклонением температуры окружающего воздуха от нормальной до любой в пределах рабочих температур, не должно превышать значений, указанные в таблице 3, на каждые $\pm 10^{\circ}C$ изменения температуры.

Таблица 3

Класс	Допускаемое изменение показаний приборов групп, %									
точности прибора	A	Б	В							
0,05	± 0,05		=1							
0,1	± 0,1	H	=							
0,2	± 0,2	± 0,15	± 0,15							
0,2 0,5	± 0,5	± 0,4	± 0,3							
1,0	± 1,0	± 0,8	± 0,5							
1,5	± 1,5	± 1,2	± 0,8							
2,5	± 2,5	± 2,0	± 1,2							
4,0	± 4,0	± 3,0	± 2,0							

Заведующий кафедрой, профессор

X2/-

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта»

Специальность 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики»

Контрольная работа (письменная)

использование современных информационных технологий и программных средств при решении задач профессиональной деятельности, обеспечивая выполнение требований информационной безопасности

формирует компетенцию ОПК-5, А-III/6-1.7., А-III/6-2.1.

Оценочные средства по дисциплине «Судовые информационно-измерительные системы»

Заведующий кафедрой Э и ЭОВТ

JP/-

ИЗМЕРЕНИЕ РЕАКТИВНОЙ ЭНЕРГИИ В ЦЕПЯХ ТРЕХФАЗНОГО ТОКА

Симметричный трехфазный приемник электрической энергии соединен по схеме *звезда* или по схеме *треугольник*.

Напряжение на фазе приемника U_{Φ} .

Активное и индуктивное сопротивления фаз приемника соответственно равны $\mathit{r}_{\scriptscriptstyle\mathcal{O}}$ и $\mathit{x}_{\scriptscriptstyle\mathcal{O}}$.

В цепь приемника включен одноэлементный счетчик активной энергии для измерения реактивной энергии. Последовательная обмотка счетчика включена в один из проводов трехфазной цепи, как указано в таблице.

Приемник электрической энергии работает непрерывное время t.

Начертить схему включения счетчика в соответствии с данными варианта.

Определить линейное напряжение $U_{\rm II}$, линейный ток $I_{\rm II}$ коэффициент мощности $\cos \varphi$ и угол φ .

Для заданной цепи построить в масштабе векторную диаграмму, выделить в ней векторы напряжения и тока, под действием которых находятся параллельная и последовательная обмотки счетчика.

Пользуясь векторной диаграммой, доказать, что счетчик, включенный по такой схеме, измеряет реактивную энергию. Определить расход реактивной энергии, учитываемой счетчиком за время t.

Подсчитать за время t реактивную энергию всего приемника.

Найти численное соотношение между энергией, учитываемой счетчиком, и энергией приемника.

Таблица

Наименование	Единица измерения	Предпо- следняя цифра шифра	हैं. Ө Последняя цифра шифра											
величин	Еди изме	Пре сле, цифра	0	1	2	3	4	5	6	7	8	9		
Схема соединения	-	-	Δ	Δ	Y	Δ	Y	Δ	Y	Y	Δ	Δ		
Последовательная обмотка счётчика														
включена в провод	120	-	В	Α	A	C	C	В	В	Α	Α	C		
\mathbf{B} ремя t	ч	~	30	50	20	20	40	40	30	30	50	30		
Фазное														
напряжение U_{Φ}	В	-	220	380	127	220	220	380	127	220	220	380		
Avenyunyuna	Ом	0;5	20	30	10	16	15	25	15	20	14	20		
Активное	Ом	1;6	19	29	11	17	16	24	18	21	16	14		
сопротивление	Ом	2;7	18	28	12	18	17	23	21	22	18	16		
фазы $\mathit{r}_{\scriptscriptstyle \!$	Ом	3;8	17	27	13	19	18	22	24	23	20	18		
- Ψ	Ом	4;9	16	26	14	20	19	21	27	24	22	26		
Интилетири оо	Ом	0;1	18	25	15	24	20	30	10	18	28	40		
Индуктивное	Ом	6;2	19	26	16	23	21	29	11	17	27	38		
сопротивление	Ом	7;3	20	27	17	22	23	28	12	16	26	36		
фазы $\mathcal{X}_{oldsymbol{\phi}}$	Ом	8;4	21	28	18	21	24	27	13	15	25	34		
- <i>\Phi</i>	Ом	9;5	22	29	19	20	25	26	14	21	24	32		

Заведующий кафедрой, профессор

XX/- (Хватов О.С.)

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта»

Специальность 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики»

Контрольная работа (письменная)

техническое обслуживание, диагностирование и ремонт электрического и электронного оборудования в соответствии с международными и национальными требованиями

формирует компетенцию ПК-2, А-III/6-2.1.

Оценочные средства по дисциплине «Судовые информационно-измерительные системы»

Заведующий кафедрой Э и ЭОВТ

JP/-

ИЗМЕРЕНИЕ АКТИВНОЙ МОЩНОСТИ В ЦЕПЯХ ТРЕХФАЗНОГО ТОКА

Для измерения активной мощности трехпроводной цепи трехфазного тока с симметричной активно-индуктивной нагрузкой, соединенной звездой или треугольником, необходимо выбрать два одинаковых ваттметра с номинальным током $I_{\rm H}$ номинальным напряжением $U_{\rm H}$ и чистом делений шкалы $\alpha_{\rm H}=150$ делений.

Исходные данные для решения задачи приведены в таблице.

- 1. По данным варианта для нормального режима работы цепи:
- а) начертить схему включения ваттметров в цепь;
- б) доказать, что активную мощность трехпроводной цепи трехфазного тока можно представить в виде суммы двух слагаемых:
- в) построить в масштабе векторную диаграмму, выделив на ней векторы напряжений и токов, под действием которых находятся параллельные и последовательные обмотки ваттметров;
- r) определить мощности P_1 и P_2 , измеряемые каждым из ваттметров;
- д) определить число делений шкалы α_1 и α_2 , на которые отклоняются стрелки ваттметров.
- 2. По данным варианта при обрыве одной фазы приемника энергии:
 - а) начертить схему включения ваттметров в цепь;
- б) построить в масштабе векторную диаграмму, выделив на ней векторы напряжений и токов, под действием которых находятся параллельные и последовательные обмотки ваттметров;
- в) определить мощности P_1 и P_2 , измеряемые каждым из ваттметров;
- г) определить число делений шкалы α_1 и α_2 , на которые отклоняются стрелки ваттметров.

	Едини ца	Предпос ледняя	Последняя цифра шифра									
Наименование величин	измер ения	цифра шифра	0	1	2	3	4	5	6	7	8	9
		0;5	3,0	6,0	5,5	5,0	3,2	1,5	2,0	2,5	3,5	1,8
		1;6	3,5	5,5	6,0	5,5	3,0	2,0	2,5	2,0	3,0	2,2
Мощность цепи S	κB	2;7	2,5	5,0	6,5	6,0	3,6	2,5	1,5	1,8	2,5	2,8
		3;8	2,0	4,5	5,0	4,5	5,0	3,0	5,0	3,0	2,0	1,4
		4;9	1,8	4,0	4,5	4,0	6,0	3,5	5,8	3,6	1,5	3,5
	-	0;1	0,7	0,8	0,9	0,72	0,82	0,88	0,83	0,92	0,84	0,72
	-	6;2	0,72	0,82	0,92	0,74	0,83	0,80	0,85	0,90	0,86	0,70
Коэфициент мощности COS Ф	-	7;3	0,74	0,84	0,73	0,76	0,84	0,81	0,87	0,88	0,85	0,76
	-	8;4	0,76	0,86	0,75	0,78	0,85	0,82	0,89	0,86	0,83	0,74
	-	9;5	0,78	0,88	0,71	0,80	0,86	0,84	0,91	0,83	0,74	0,80
Фазное напряжение $U_{\scriptscriptstyle \phi}$	В	-	127	220	380	220	380	127	380	220	127	127
Схема соединения	-		λ	λ	Δ	λ	Δ	λ	Δ	Δ	λ	λ
Последовательные обмотки ваттметров включены в провода	-		AuB	BuC	CuA	AuB	ВиС	CuA	AuB	ВиС	CuA	AuB
Обрывы фазы	<u>-</u>	-	A	В	AB	С	ВC	A	CA	AB	В	С

Заведующий кафедрой, профессор

X-2/-

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта»

Специальность 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики»

Контрольная работа (письменная)

диагностирование и ремонт электрического и электронного оборудования в соответствии с международными и национальными требованиями

формирует компетенцию ПК-5, А-III/6-1.7., А-III/6-2.1.

Оценочные средства по дисциплине «Судовые информационно-измерительные системы»

Заведующий кафедрой Э и ЭОВТ

NP/-

МЕТОДЫ И ПОГРЕШНОСТИ ЭЛЕКТРИЧЕСКИХ ИЗМЕРЕНИИ

Для измерения сопротивления косвенным методом использовались два прибора: амперметр и вольтметр магнитоэлектрической системы.

Измерение сопротивления производилось при температуре t°C приборами группы A, Б или B. Данные приборов, их показания, а также группа приборов и температура окружающего воздуха, при которой производилось измерение сопротивления, приведены в таблице 5.

Определить:

- 1. величину сопротивления r_X по показаниям приборов и начертить схему;
- 2. величину сопротивления r_X с учетом схемы включения приборов;
- 3. наибольшие возможные (относительную и абсолютную) погрешности результата измерения этого сопротивления;
- 4. в каких пределах находятся действительные значения измеряемого сопротивления.

Методические указания к решению задачи №4

При измерении сопротивления методом двух приборов – амперметра и вольтметра, применяются две схемы. В этом случае приближенное значение сопротивления $r_x^{\ \prime}$ согласно закону Ома определяется как $r_x^{\ \prime} = \frac{U}{I}$.

Одна из схем (без учета внутреннего сопротивления приборов) используется в тех случаях, когда измеряемое сопротивление велико по сравнению с сопротивлением амперметра; другая – в

	Наименование величин	Единицы	Предпосле- дняя цифра	тослодия цифра шифра									
		измерения	шифра	0	1	2	3	4	5	6	7	8	9
	Предел измерения U_N	В	-	300	150	15	7,5	300	30	300	150	75	30
Įε	Ток полного отклонения при $U_{\rm N}$	мА	-	3	7,5	1	1	7,5	1	1	3	1	7,5
Данные в	Класс точности үд	%	-	0,2	0,5	1,0	0,2	0,5	1,0	1,0	0,5	0,5	1,0
вольтметра	Показание вольтметра U	B B B B	0; 5 1; 6 2; 7 3; 8 4; 9	220 280 250 170 290	140 130 120 110 150	12 10 8 11 14	60 70 65 75 55	240 260 210 250 200	27 25 23 28 29	270 180 230 240 160	100 110 140 120 130	50 60 70 65 75	20 26 18 22 25
	Предел измерения I_N	A	-	1,5	3,0	1,5	7,5	0,3	15	1,5	1,5	0,3	15
Данные	Падение напряжения на зажимах прибора при ${ m I}_{ m N}$	В	-	100	95	100	140	27	100	100	100	27	100
ые амі	Класс точности үд	%	-	0,5	1,0	0,2	0,5	1,0	0,2	1,0	0,5	0,2	1,5
амперметра	Показания амперметра I	A	0; 1 6; 2 7; 3 8; 4 9; 5	1,0 1,5 2,0 2,5 3,0	1,5 3,0 6,0 4,5 7,5	2,0 10 5,0 1,5 0,5	10 2,0 3,0 5,0 2,5	1,5 3,0 4,5 15 30	3,0 1,5 6,0 4,5 0,3	25 2,5 5,0 7,5 0,5	30 25 15 1,5 7,5	20 5,0 10 0,5 4,0	5 15 0,5 1,0 20
	Группа приборов			A	Б	В	A	Б	В	A	Б	В	A
	Tемпература t	°C		10	0	-10	30	10	0	25	30	40	10

вольтметра. Поскольку в практике измерений этим методом подсчет сопротивления $r_x^{'}$ обычно производится по приближенной формуле, то необходимо знать, какую схему следует выбрать для того, чтобы величина погрешности была наименьшей. Чтобы правильно выбрать схему, необходимо сначала определить отношения $r_x^{'}/r_A$ и $r_V^{'}/r_x^{'}$ и по наибольшему из них принять и выбрать схему включения приборов.

Величина сопротивления r_x определяется с учетом внутреннего сопротивления приборов r_A или r_V в зависимости от принятой схемы.

Приступая к решению п. 3, необходимо иметь ввиду, что погрешности электроизмерительных приборов разделяются на две погрешность, категории: а) основная зависящая свойств внутренних И состояния самого прибора; дополнительные погрешности, обусловленные влиянием внешних факторов и отклонением условий эксплуатации прибора от нормальных (например, отклонением температуры окружающего воздуха от нормальной).

Погрешность измерения γ будет представлять собой сумму основной погрешности $\gamma_{\mathcal{A}}$ (класс точности прибора) и дополнительной погрешности γ_t , вызванной отклонением температуры окружающего воздуха от нормальной (принимается обычно $t_H=20^{\circ}C$); причем следует принимать случай наиболее неблагоприятный, когда

$$\pm \gamma = \pm \gamma_{\varLambda} \pm \gamma_{t}$$

Относительная погрешность при косвенном методе измерения сопротивления определяется по формуле

$$\pm \gamma_r = \pm \gamma_U \pm \gamma_I$$

Где γ_U и γ_I - относительные погрешности измерений напряжения и тока.

Величины γ_U и γ_I могут быть определены по формулам,

приведенным ниже. Так относительная погрешность при измерении напряжения будет

$$\gamma_U = \frac{\Delta U}{U} 100\% = \frac{\pm \gamma U_H}{100\%} - \frac{100\%}{U} = \pm \gamma \frac{U_H}{U}$$

Аналогично определяется относительная погрешность и при измерении тока.

Для определения абсолютной погрешности Δr , а также изменения действительного значения измеряемого сопротивления г следует пользоваться соотношением

$$\pm \gamma_r = \frac{\Delta r}{r_x} 100\%$$

По исполнению в зависимости от условий эксплуатации приборы разделяются на три группы: А, Б и В. Ниже, в таблице 6, приводятся нормы для рабочих климатических условий по температуре для приборов различных групп.

Таблина 6

Параметры	Группы приборов								
окружающего воздуха	A	Б	В						
Температура	от +10 до + 35°C	от – 30 до +40°C	от – 50 до + 60°C						

Изменение показаний прибора, вызванное отклонением температуры окружающего воздуха от нормальной до любой в пределах рабочих температур, не должно превышать значений, указанные в таблице 7, на каждые $\pm 10^{\circ} C$ изменения температуры.

Таблица 7

Класс	Допускаемое изменение показаний приборов групп, %									
точности	Δ	Б	В							
прибора	71	Ь	D							
0,05	± 0,05	-	8							
0,1	$\pm 0,1$	I -	-							
0,1 0,2	$\pm 0,2$	$\pm 0,15$	$\pm 0,15$							
0,5	$\pm 0,5$	$\pm 0,4$	± 0.3							
1,0	\pm 1,0	± 0.8	$\pm 0,5$							
1,5	± 1,5	$\pm 1,2$	± 0.8							
2,5	± 2,5	$\pm 2,0$	± 1,2							
4,0	\pm 4,0	\pm 3,0	\pm 2,0							

Заведующий кафедрой, профессор

XL/- (Хватов О.С.)

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волжский Государственный Университет Водного Транспорта»

Специальность 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики»

Оценочные средства по дисциплине: «Судовые информационноизмерительные системы»

Экзаменационные билеты

Формируют компетенции:

ОПК-3.3.1,ОПК-53.1,ПК-2.3.1,ПК-5.3.1 A-III/6-1.7.,A-III/6-2.1.

Заведующий кафедрой Э и ЭОВТ

Хватов О.С.

JP/-

Н.Новгород

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20__/20__ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1 по дисциплине "судовые информационно измерительные системы".

- 1. Основные положения теоретической метрологии: основные этапы измерения, классификация измерений.
- 2. Основные положения теории погрешностей: принципы оценивания погрешностей, классификация погрешностей.

Зав. кафедрой профессор

HH-

Хватов О.С.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта" X семестр V курса 20_/20_ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2 по дисциплине «судовые информационно измерительные системы».

- 1. Основные положения измерительных сигналов: классификация измерительных сигналов, квантование и дискретизация.
- 2. Обобщенная структурная схема. Классификация СИИС по функциональному назначению.

Зав. кафедрой профессор

XR/-

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта" X семестр V курса 20__/20__ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3 по дисциплине «судовые информационно измерительные системы».

- 1. Система централизованного контроля, система автоматического контроля, система технической диагностики, система распознавания образов: назначение, примеры применения на судах.
- 2. Цифро-аналоговые преобразователи: классификация, методы преобразования.

Зав. кафедрой профессор

XR/-.

Хватов О.С.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20 _/20 __ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4

по дисциплине «судовые информационно измерительные системы».

- 1. Основные группы структур СИИС: структура параллельного действия, многоточечная и мультиплицированная сравнительный анализ, преимущества и недостатки.
- 2. Коммутаторы: назначение, принцип действия.

Зав. кафедрой профессор

12/-.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта" X семестр V курса 20_/20__ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5 по дисциплине «судовые информационно измерительные системы».

- 1. Измерительные нормирующие преобразователи: назначение, принцип действия.
- 2. Аналого-цифровые преобразователи: классификация, методы преобразования.

Зав. кафедрой профессор

XR/-.

Хватов О.С.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20 _/20 __ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6

по дисциплине «судовые информационно измерительные системы».

- 1. Цифро-аналоговые преобразователи: классификация, методы преобразования.
- 2. Логические контроллеры. Устройства пользовательского интерфейса.

Зав. кафедрой профессор

XR/-.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20__/20__ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7 по дисциплине «судовые информационно измерительные системы».

- 1. Современные средства осциллографирования и регистрации сигнала.
- 2. Цифровые, аналого-цифровые и виртуальные на базе ПК осциллографы.

Зав. кафедрой профессор

HH-.

Хватов О.С.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20__/20__ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8 по дисциплине «судовые информационно измерительные системы».

- 1. Требования к изоляции слаботочной и силовой части СИИС. Цепи на безопасное напряжение.
- 2. Современные средства осциллографирования и регистрации сигнала. Цифровые, аналого-цифровые и виртуальные на базе ПК осциллографы.

Зав. кафедрой профессор

12/-

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта" Х семестр V курса 20_/20_ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9 по дисциплине «судовые информационно измерительные системы».

- 1. Требования техники безопасности при работе со снятым напряжением и под напряжением.
- 2. Требования к изоляции слаботочной и силовой части СИИС. Цепи на безопасное напряжение

Зав. кафедрой профессор

HH-

Хватов О.С.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20 /20 учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10 по дисциплине «судовые информационно измерительные системы».

- 1. Поиск и устранение неисправностей цепей защиты, управления и сигнализации главной двигательной установки и вспомогательных механизмов.
- 2. Системы пожарной, пожароохранной и дымоизвещательной сигнализации: структура, пожарные извещатели, системѕ сигнализации.

Зав. кафедрой профессор

XL/-

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта" Х семестр V курса 20_/20_ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11 по дисциплине «судовые информационно измерительные системы».

- 1. Построение каналов измерения и контроля; назначение, принцип действия, характеристики функциональных элементов рассматриваемых СИИС
- 2. Поиск и устранение неисправностей цепей защиты, управления и сигнализации главной двигательной установки и вспомогательных механизмов.

Зав. кафедрой профессор

XR/-.

Хватов О.С.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20__/20__ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12 по дисциплине «судовые информационно измерительные системы».

- 1. Виды и методы испытаний СИИС, систем защиты, управления и сигнализации.
- 2. Приемы чтения электрических и электронных принципиальных, структурных и функциональных схем защиты, управления и сигнализации.

Зав. кафедрой профессор

XX/-

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта" X семестр V курса 20_/20__ учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 по дисциплине «судовые информационно измерительные системы».

- 1. Техническая диагностика и техническое обслуживание цепей защиты, управления и сигнализации главной двигательной установки и вспомогательных механизмов.
- 2. Виды и методы испытаний СИИС, систем защиты, управления и сигнализации.

Зав. кафедрой профессор

XXI-

Хватов О.С.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волжский государственный университет водного транспорта» (ФГБОУ ВО ВГУВТ)

Кафедра "Электротехника и электрооборудование объектов водного транспорта"

Х семестр V курса 20 /20 учебного года

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14 по дисциплине «судовые информационно измерительные системы».

- 1. Поиск и устранение неисправностей цепей защиты, управления и сигнализации главной двигательной установки и вспомогательных механизмов.
- 2. Системы пожарной, пожароохранной и дымоизвещательной сигнализации: структура, пожарные извещатели, системы сигнализации.

Зав. кафедрой профессор

12/-.